TECHNICAL MANUAL

SYLVANIA RADIO TUBES

A Technical Publication of

EMPORIUM, PENNA.

COPYRIGHT 1951, BY SYLVANIA ELECTRIC PRODUCTS, INC.

EIGHTH EDITION COMPLETELY REVISED 2nd Printing

The information in this Technical Manual is furnished without assuming any obligations.

•

1

Printed in U.S.A. FORM 202

THE SYLVANIA TECHNICAL MANUAL

FOREWORD

Daily developments in every field of the electronics industry have necessitated many new tube types. Keeping abreast of these many types is always a problem for servicemen and engineers. In preparing the eighth edition of this manual, every effort has been expended to assure the completeness of its contents.

One important item is the size of the book. Although more than 45 types have been added to this edition, it has still turned out to be a thinner book, easier to handle and with less danger of torn pages. To accomplish this goal, much of the previously vacant half-pages have been utilized. Many curves have been dropped on those types which are now of interest only on a renewal basis. There are, consequently, many places where data on a particular type begins at mid-page and many pages which contain two or more types. At all times, however, numericalalphabetical order has been maintained.

The increased number of cathode ray tubes has made it preferable to establish a separate section for these types. In this manner, comparisons may be made far more easily than if they were kept in the balance of the manual. Where A and B versions of television picture tubes have been included at the bottom of a listing, it should be noted that the basic diagram is shown only for the primary version. Differences encountered in the suffixed versions must be taken into consideration when studying this diagram.

The new loose-leaf binder requires no explanation. Its added simplicity of operation will make it more convenient to keep it up to date by means of the monthly supplement sheets. These additions are published in conjunction with Sylvania News, available without charge by sending a request to Sylvania Electric Products, Inc., Advertising Department, Emporium, Pennsylvania.

SYLVANIA RADIO TUBES

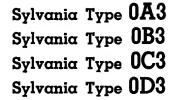

111

TABLE OF CONTENTS

Foreword
Active TypesIn Numerical Order
Active Television Picture Tube TypesIn Numerical Order
Fundamental Electrical LawsAppendix 1-2
Fundamental Properties of Vacuum Tubes
Definitions5-7
General Tube and Circuit Information8-23
Interpretation of Receiving Tube Ratings
B Voltage Supplies
Heater Voltage Supplies10
Volume Control Considerations11
Shielding
Filtering
Lock-In Types
Metal Types
G, GT and GT/G Types13
Miniature Types
Battery Tubes
Tube and Base Diagram Symbols15
Base Connection Diagrams
Cathode Ray Tubes16
Tube Dimensions ST1217
ST 14 & 1618
T9, GT19
• Lock-In
Miniature
Metal21
Use of Curves
Resistance Coupled Data Explanation
Tabulations for Individual Types 26-55
Obsolete and Seldom Encountered Types
Sylvania Panel Lamps
Sylvania Ballast Lamps
Sylvania Product Directory85
Sylvania Aids for Servicemen

IV

RATINGS

105 5 40 100	OB3 125 5 30 100	OC3 133 5 40 100	OD3 185 Volts 5 Ma. 40 Ma. 100 Ma.	
TYPICAL OPERATION				
75	90	105	150 Volts 5.5 Volts	
	40 100 ATIO one Re	105 125 5 5 40 30 100 100 ATION one Required 75 90	105 125 133 5 5 5 40 30 40 100 100 100 ATION one Required 75 90 105	

Sylvania Type 0A4G

COLD CATHODE CONTROL TUBE

4V-0-0

PHYSICAL SPECIFICATIONS

Base	Small Octal 6-Pin
Bulb	ST-12
Maximum Overall Length	41/8"
Maximum Seated Height	3%
Mounting Position	Any

RATINGS

Min. Anode to Cathode Breakdown Voltage	
(Starter Anode Potential 0 Volts)	225 Volts
Starter Anode to Cathode Breakdown Voltage-Min.	70 Volts
Max	90 Volts
Max. Starter Anode Current for Anode Breakdown	100 µa.
Starter Anode to Cathode Voltage Drop (Approx.)	60 Volts
Anode to Cathode Voltage Drop (Approx.)	70 Volts
Anode Current-Continuous Max	25 Ma.
Instantaneous Max	100 Ma.

TYPICAL OPERATION

 Anode Supply Voltage (RMS)
 105 to 130 Volts

 Starter Anode Voltage—Peak AC
 70 Volts

 Peak RF
 55 Volts

 Note; To assure stable operation, the 0A4G should be shielded from external light sources.

OA5 Sylvania Type

TRIGGERTUBE

PHYSICAL SPECIFICATIONS

BaseMiniature	Button 7 Pin
Bulb	T-5½
Maximum Overall Length.	1 5 8'' 1 3 8''
Maximum Seated Height	13/8"
Mounting Position	Any

RATINGS

Maximum Anode Operating Voltage DC	1000 Volts
Minimum Anode Operating Voltage DC (1)	500 Volts
Minimum Trigger Grid Firing Voltage (2)	+180 Volts
Minimum Hold-Off Voltage DC (3)	1500 Volts
Minimum Trigger Grid Pulse Voltage to Fire (2)	50 Volts
Maximum Trigger Grid Pulse Current (4)	40 µa.
Maximum Discharge Capacitance	0.5 µfd.
Maximum Power Input (5)	1.0 Watt
Maximum Repetition Rate	See Note 5
Minimum Peak Cathode Current to Produce Arc.	10 Amperes
Ambient Temperature Range40 t	to +60° C.

(1) Operation at 250 volts is possible providing higher trigger pulse voltages are available.

(2) This is the sum of bias voltage and triggering pulse.

(3) Voltages above this limit may cause the tube to fire without application of pulse voltage. Measured in a typical circuit with a trigger grid bias of 90 volts and a keep-alive current of 50 ua.

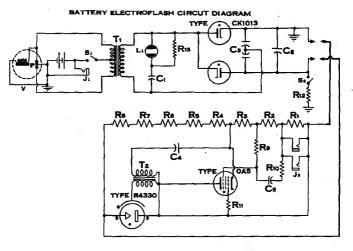
(4) Measured in a typical circuit with 50 us keep-alive current and 90 volts trigger grid bias.

(5) The maximum power input is given by $W = \frac{1}{2}CV^{2}f$ where C is the discharge capacitance in microfarads, V is the anode voltage in kilovolts and f is the number of flashes or pulses per second. This relation also determines the maximum repetition rate.

TYPICAL OPERATION

In an Electroflash Trigger Circuit

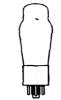
Anode Voltage DC	750 Volts
Trigger Grid Voltage	+90 Volts
Trigger Grid Circuit Resistance	0.25 Megohm
Trigger Pulse Voltage	85 Volts
Keen-Alive Current	50 us.
Discharge Condenser.	0.25 µfd.


APPLICATION

Sylvania Type 0A5 is a miniature cold cathode gas discharge tube designed for use as a trigger tube for switching service requiring extremely high instantaneous peak currents (hundreds of amperes). It is sensitive enough and will carry high enough current to permit photocell operation of some devices without special amplifiers. The circuit below shows its use in a typical portable Electroflash unit, where its use reduces the current carrying capacity requirement of the switch and also reduces the shock hazard.

Note that for most applications the shield grid (Pin 5) is left floating. This increases the sensitivity. Connection to the cathode through a 10 meg. resistor increases the hold-off voltage considerably, but a higher trigger grid current will be required.

Sylvania Type 0A5 is manufactured under license granted by Edgerton, Germeshausen, and Grier, but no license is granted nor is a license to be implied under their circuit patents.


(Cont'd) OA5

PARTS LIST

Condenser	Capacity	Working Voltage	Resistor	Ohms	Watts
C1	.001 µfd.	2500	R12	5000	10
C2	32 µfd.	2500	R13	47,000	1/2
C3	.05 – .05 µfd.	2000			
C4	.25 µfd.	1000	MISCELLANEOUS		
C5	.01 µfd.	600	Batterv	4 Volt Sto	rage
Resistor	Ohms	Watts	J1 J2	Battery charging Camera and Syn	connection
R1	.51 Meg.	1/2		connection	8
R2	1.8 Meg.	XXXX	L1	Neon Indicator L	amp
R3	.47 Meg.	12	S1	Off-On switch S.I	P.S.T.
R4 to R8	1.6 Meg. each	1	S2	Safety switch	
R 9	10 Meg.	1/2	T1	Vibrator Transfor	
R10	.27 Meg.	1/2	T2	Trigger Transform	ner
R11	10 Meg.	1⁄2	v	Vibrator	

Sylvania Type 0B3 Sylvania Type 0C3 Sylvania Type 0D3 Voltage regulators

(SEE TYPE OA3 FOR SPECIFICATIONS AND RATINGS)

SYLVANIA RADIO TUBES

1

0Z4 Sylvania Type 0Z4G Sylvania Type

FULL WAVE GAS RECTIFIERS

÷.

ŗ,

4R-1-0 (0Z4) 4R-0-0 (0Z4G)

.....

PHYSICAL SPECIFICATIONS

	024	0Z4G		
Base	Wafer Octal 6 Pin	Dwarf Octal 5 Pin		
Bulb	. Metal 8-3	T-7		
Maximum Overall Length	. 25%*	2 5%		
Maximum Seated Height	. 214	21%*		
Mounting Position	. Any	Any		
RATINGS				
	(GD)			

Heater Voltage	None Required
Peak Starting Plate Voltage	300 Min.
Peak Plate Current (Operating)	200 Ma.
Peak Plate to Plate Voltage	1000 Volta
DC Output Current	fin. 90 Ma. Max
	ALL ALL ALLA

TYPICAL OPERATION

Heater Voltage AC Plate Voltage (RMS)..... DC Output Current.....

1A5^{GT} Sylvania Type POWER AMPLIFIER PENTODE

None Required 300 Volts 90 Ma.

6X-0-0

PHYSICAL SPECIFICATIONS

Base	Intermediate ()	octal 7_Pin
Bulb		T-9
Maximum Overall Length		3.46"
Maximum Seated Height		234"
Mounting Position		Any
RĀTINGS		
RATINGS		
Maximum Filament Voltage		1.6 Volts
Filament Voltage (Design Center for AC-DC Oper	•••) • • • • • • • • • • • • • • • • •	1.3 Volts
Maximum Plate Voltage		110 Volts
Maximum Screen Voltage		110 Volts
Maximum Total Zero Signal Cathode Current		6 Ma.
TYPICAL OPERATION AS A C		1770
Filament Voltage	. 1.4 1.4	
Filament Current		mpere
Plate Voltage	. 85 90 \	/olts
Screen Voltage		/olts
Grid Voltage*	4.5 -4.5	
Plate Current		
Screen Current	. 0.7 0.8 1	
Plate Resistance		Megohm
Mutual Conductance	. 800 850 µ	mhos
Load Resistance		
Power Output		filliwatts
Total Harmonic Distortion		Percent
*Self bias is recommended for battery operation	authough it reduces	the power

*Self bias is recommended for battery operation although it reduces the power output slightly. It makes a separate bias supply unnecessary and allows the bias to decrease in proportion with the decrease in B supply volts with age.

Sylvania Type 1**A7**GT

HEPTODE CONVERTER

72-1-0

PHYSICAL SPECIFICATIONS

Base	Small Wafer Octal 8-Pin Me	tal Sleeve
Bulb		T- 9
Сар		Miniature
Maximum Overall Length		3%16
Maximum Seated Height		2 3/4 * Any
Mounting Position		Any

RATINGS

Filament Voltage	1.4 Volts
Filament Current	0.05 Ampere
Maximum Plate Voltage	110 Volts
Maximum Screen Voltage	60 Volts
Maximum Screen Supply Voltage	110 Volts
Maximum Anode-Grid Voltage	110 Volts
Maximum Cathode Current	4. U M18.

TYPICAL OPERATION

Filament Current		1.4 Volts 0.05 Ampere 90 Volts 45 Volts
Anode-Grid Voltage		90 Volts
Oscillator Grid Resistor (Go)		0 Volts 00000 Ohms
Plate Resistance		0.6 Megohm
		0.55 Ma. 0.6 Ma.
Anode-Grid Current		1.2 Ma.
		0.035 Ma. 2.4 Ma.
Conversion Conductance;	•••••••••••••••••••••••••••••••••••••••	2.4 MI8.
Control Grid Voltage at 0	/olts	250 µmhos
	Volts	50 µmhos 5 µmhos
		ohm resistor in

series with a 90 volt supply. A resistance of at least 1 megohm should be in the grid return to negative filament pin.

Sylvania Type 1AC5

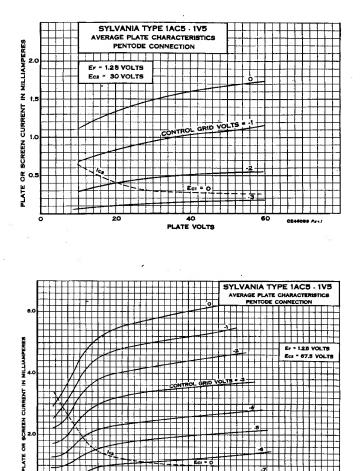
OUTPUT PENTODE

PHYSICAL SPECIFICATIONS

HTHT

			Subminiature Button 8 Pin
Bulb Maximum Overall 1	Length		
Maximum Seated H	Ieight		134" 11/2" Any
Mounting Position.	•••••		Any
		BATINGS	

Filament Voltage DC. 1.25 Volts Maximum Plate Voltage. 67.5 Volts Maximum Screen Voltage. 67.5 Volts Maximum Cathode Current. 4.0 Ma.


1AC5 (Cont.)

TYPICAL OPERATION

CLASS A	VMLPILI	5R	
Filament Voltage DC	1.25	1.25	1.25 Volts
Filament Current	40	40	40 Ma.
Plate Voltage	30	45	67.5 Volts
Screen Voltage	30	45	67.5 Volts
Grid Voltage	-2.0	-3.0	-4.5 Volts
Plate Current.	0.50	1.0	2.0 Ma.
Screen Current	0.10	0.2	0.4 Ma.
Plate Resistance (Approx.)	, 200	. 170	.150 Megohm
Mutual Conductance		600	750 μmhos
Load Resistance	50,000	40,000	25,000 Ohms
Power Output	5	15	50
Total Harmonic Distortion	10	10	, 10%

APPLICATION

Sylvania Type 1AC5 is an Output Pentode suitable for use in very small radio sets or amplifiers. The other types required for a normal set complement and designed for such usage are Types 1E8 (Converter), 1T6 (Diode Pentode) and 1AD5 (RF Pentode).

SYLVANIA RADIO

PLATE VOLTE

TUBES

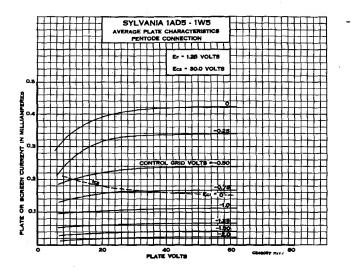
160

120

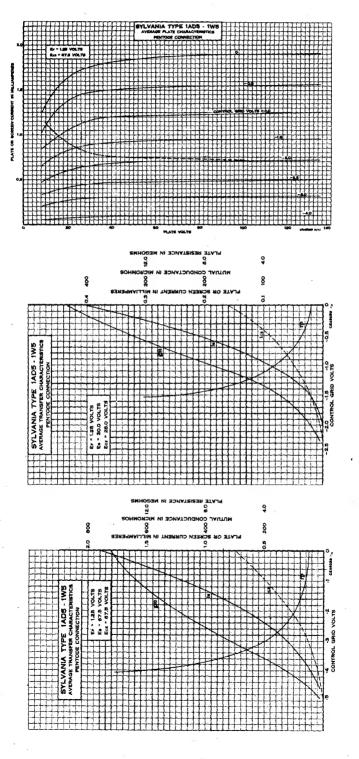
Sylvania Type 1AD.

SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS


MM

BaseBulb		
Maximum Overall Length Maximum Seated Height Mounting Position		····· 1%" ····· 1%"
Direct Interelectrode Capacitances:*		
	Unshielded	Shielded*
Grid to Plate Input. Output.	1,8	.009 μμf. Max. 1.9 μμf. 3.0 μμf.
*With 0.405" diameter shield connected to 1, 3 and 6 must be grounded to obtain these v	negative filament.	Leads numbering
TYPICAL OPE	RATION	*
Filament Voltage DC Filament Current	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.25 Volts 40 Ma.


Filament Current	- 40	40 Ma.
Plate Voltage	45	67.5 Volts
Screen Voltage	45	67.5 Volts
Grid Voltage 0	0	0 Volts
Plate Current	0.9	1.85 Ma.
Screen Current	0.35	0.75 Ma.
Plate Resistance (Approx.)	0.7	0.7 Megohm
Mutual Conductance 430	580	735 µmhos
Control Grid Voltage for Ib=10 µa. (Approx.) -3.0	-4.0	-6.0 Volts

APPLICATION

Sylvania Type 1AD5 is an RF Pentode tube suitable for use in very small radio sets or amplifiers. The other types required for a normal set complement and designed for such usage are Types 1E8 (Converter), 1T6 (Diode Pentode) and 1AC5 (Output Pentode).

1AD5 (Cont'd)

1B3^{GT} Sylvania Type

HALF-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

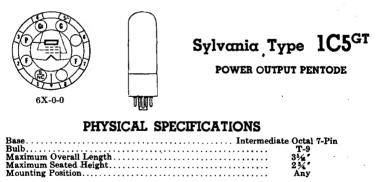
ΠŊ

BaseShe	ort Intermediate Shell Octal 6-Pin
Bulb	Т-9
Сар	Small
Maximum Overall Length	4^{1}_{16}
Maximum Seated Height	
Mounting Position	Any

RATINGS

Filament Voltage AC or DC.	1.25 Volts
Filament Current	200 Ma.
Maximum Peak Inverse Plate Voltage	30,000 Volts
Maximum Peak Plate Current	
Maximum Average Plate Current	2 Ma.
Maximum Frequency of Supply Voltage	300 Kc.
Direct Interelectrode Capacitances*	+
Plate to Filament (Approx.)	1.2 uuf.

* Unshielded.


APPLICATION

Sylvania Type 1B3GT is a high-vacuum half-wave rectifier designed for high voltage service where low currents are re-quired. Typical examples are for operation of cathode-ray tubes and electroflash units. When the high voltage is supplied by an oscillator care should be taken to use large leads and long radius corners to avoid corona loss. When the filament is also supplied by the oscillator the adjustment for proper operation to approximate the second

oscillator the adjustment for proper operating temperature should be made optically by comparison with a similar filament on a readily metered supply.

WARNING

The voltages employed in some television receivers and other high voltage equipment are sufficiently high that high-voltage rectifier tubes may produce X-rays which can con-stitute a health hazard, unless such tubes are adequately shielded.

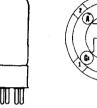
TYPICAL OPERATION

Filament Voltage		1.4	1.4 Volts
Filament Current			0.10 Ampere
Plate Voltage			90 Volts
Screen Voltage			90 Volts
Grid Voltage*			-7.5 Volts
Plate Current		7.0	7.5 Ma.
Screen Current		1.6	1.6 Ma.
Plate Resistance			115000 Ohms
Mutual Conductance.			1550 µmhos
Amplification Factor			180
Load Resistance			8000 Ohms
Power Output			240 Mw.
Total Harmonic Disto	rtion		10 Per Cent
*Negative filament r	eturn, Pin No.	7.	

1C8 Sylvania Type

PENTAGRID CONVERTER

T-3 11/2" 11/2"


PHYSICAL SPECIFICATIONS

ШШ

. . Flexible Leads Ba Bulb.

1D21 Sylvania Type

STROBOTRON

PHYSICAL SPECIFICATIONS

4 Pin
9
1/2" 5/8"
%"
ny

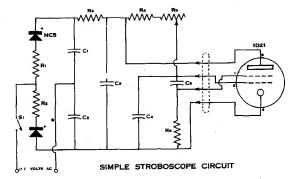
RATINGS

Maximum Anode Voltage DC*	300 Volts
Maximum Peak Inverse Anode Voltage	50 Volts
Minimum Peak Cathode Current.	5 Amperes
Maximum Average Cathode Current	50 Ma.
Maximum Pulse Frequency	240 pps
Maximum Average Grid Current	15 Ma.
Maximum Control Grid Circuit Resistance	5 Megohms
Maximum Grid Current (Surge)	1 Ma.
Maximum Shield or Control Grid Voltaget	± 50 Volts
Minimum Grid Pulse Voltage	175 Volts
Approx. Tube Voltage Drop—Glow Discharge	70 Volts
-Arc Discharge	20 Volts
Ambient Temperature Range55 to	+90° Cent.

TYPICAL OPERATION

Anode Voltage*	300 Volts
Average Cathode Current	50 Ma.
	10 to 200 Amperes
Control Grid Voltaget	0 Volts
Shield Grid Voltaget	+30 Volts
Pulse Voltage	175 Volts

TEither grid may be used for control with proper bias on the other grid.


APPLICATION

Sylvania Strobotron Type 1D21 is a gas discharge tube which when used in a suitable circuit may be used for study-ing the motion of rotating or reciprocating parts up to 14,400 revolutions per minute.

A circuit for a simple stroboscope requiring a minimum of parts and capable of operating over the range from 600 to 6720 revolutions per minute is shown below.

Sylvania Strobotron tubes are manufactured under license granted by Edgerton, Germeshausen, and Grier, but no license is granted nor is a license to be implied under their circuit patents.

(Cont'd) 1D21

PARTS LIST

R1-10 ohm, 1 w. res. R2-10 ohm, 1 w. res. R3-3500 ohm, 10 w. wirewound res. R4-50,000 ohm, 1 w. res. R5-1 megohm pot. R6-2 megohm, 1 w. res.

 $\begin{array}{c} C1-20 \ \mu fd., \ 450 \ v. \ elec. \ cond. \\ C2-20 \ \mu fd., \ 450 \ v. \ elec. \ cond. \\ C3-1 \ \mu fd., \ 400 \ v. \ cond. \\ C4-. \ 1 \ \mu fd., \ 400 \ v. \ cond. \\ C5-. \ 01 \ \mu dd., \ mic \ cond. \\ S1-S.p.s.t. \ toggle \ sw. \end{array}$

Sylvania Type 1E8

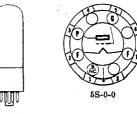
PENTAGRID CONVERTER

PHYSICAL SPECIFICATIONS

Base Bulb Maximum Overall Length Maximum Seated Height Mounting Position	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Direct Interelectrode Capacitances:		
Control grid to all other electrodes Control grid to plate Plate to all other electrodes Oscillator grid to control grid Oscillator grid to all other electrodes	0.4 μμf. Max. 5.0 μμf. 	
TYPICAL OPERATION		
Filament Voltage DC. 1.25 Filament Current. 40 Plate Voltage 30	1.25 1.25 Volts 40 40 Ma. 45 67.5 Volts	

Filament Current	40	40	40 Ma.
Plate Voltage	30	45	67.5 Volts
Screen Supply Voltage	30	45	67.5 Volts
Screen Grid Resistor	10,000	15,000	20,000 Ohms
Grid Voltage	0	0	0 Volts
Plate Current.	0.30	0.6	1.0 Ma.
Screen Current	0.8	1.1	1.5 Ma.
Plate Resistance (Approx.)	0.3	0.4	0.4 Megohm
Conversion Transconductance	115	140	$150 \ \mu mhos$
Oscillator Grid Resistance	0.1	0.1	0.1 Megohm
Oscillator Grid Current	30	50	70 µa.
Control Grid Voltage for $Gc=5 \mu mhos$ approx.	-7.0	-8.0	-9.0
Oscillator Characteristics*			

Oscillator Characteristics*

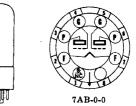

APPLICATION

Sylvania Type 1E8 is a converter tube for use in very small radio sets. The other types required for a normal set complement and designed for such usage are Types 1T6 (Diode Pentode), 1AC5 (Output Pentode) and 1AD5 (RF Pentode).

This type corresponds in service and circuit requirements to Type 1R5 except for optimization of the performance at low voltages.

1G4^{GT} Sylvania Type

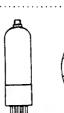
MEDIUM-MU TRIODE


PHYSICAL SPECIFICATIONS

Base,Intermediate Oc	tal 7 Pin		
Bulb	T- 9		
Maximum Overall Length	35 16		
Mounting Position	Any Any		
TYPICAL OPERATION			

Filament Voltage DC	1 4 Volts
Filament Current	50 Ma.
Plate Voltage	90 Volts Max.
Grid Voltage*	-6.0 Volts
Plate Current.	
Mutual Conductance.	
Amplification Factor.	
*Negative filament return. Pin No. 7.	0.0

1G6^{GT} Sylvania Type


DUO TRIODE POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base Intermediate Octal 7 Pin Bulb T-9 Maximum Overall Length 3 ⁵ / ₁₆ " Maximum Seated Height 2 ³ / ₄ " Mounting Position Any			
TYPICAL OPERATION			
Filament Voltage DC 1.4 Volts Filament Current 100 Ma.			
CLASS A AMPLIFIER (Each Triode)			
Plate Voltage 90 Volts Grid Voltage 0 Volt Plate Current 1.0 Ma. Plate Resistance 400000 Ohms Mutual Conductance 825 μmhos Amplification Factor 33			
CLASS B POWER AMPLIFIER			
Plate Voltage 90 Volts Max. Grid Voltage. 0 Volt Plate Current Per Plate (Zero Signal) 1.0 Ma. Peak Plate Current Per Triode. 20 Ma. Max. Load Resistance (Plate to Plate) 12000 Ohms Power Output*. 675 Mw. Distortion (Approx.) 3 Per Cent			

1H5^{GT} Sylvania Type DIODE HIGH-MU TRIODE

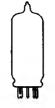

PHYSICAL SPECIFICATIONS

	Base	Small Wafer 7 Pin Octal Metal Sleeve
	Bulb	Т-9
	Сар	Miniature
	Maximum Overall Length Maximum Seated Height	
÷	Maximum Seated Height	
	Mounting Position	Any

Sylvania Type 1L4

SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS


Base. Bulb.		
Maximum Overall Length	••••••	216
Maximum Seated Height		$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
Mounting Position		Any
		•
RATINGS		···
Filament Voltage		
Battery Operation-Must Never Exceed		1.6 Volts
AC DC Power Line Operation-Design Center		1.3 Volts
Maximum Plate Voltage		110 Volts
Maximum Screen Voltage	· • • · · · · · • • •	90 Volts
Maximum Total Cathode Current		6.5 Ma.
Minimum Grid Bias		0 Volt
Direct Interelectrode Capacitances:* Grid to Plate Input		3.6 µµf
TYPICAL OPERATION	ON	
Filament Voltage DC	1.4	1.4 Volts
Filament Current	50	50 Ma.
Plate Voltage	90	90 Volts
Screen Voltage	67.5	90 Volts
Grid Voltage	0	0 Volts
Plate Resistance		0.35 Megohm
Mutual Conductance	925	1025 µmhos
Plate Current	29	4 5 Ma

For use in resistance coupled amplifiers see appendix.

Screen Current..... Grid Bias for 10 µa. Plate Current

7DC-0-0

Sylvania Type 1L6

2.0 Ma. 8.0 Volts

 $1.2 \\ 6.0$

PENTAGRID CONVERTER

PHYSICAL SPECIFICATIONS

Base			
Maximum Overall Length	21/8"		
Maximum Seated Height			
	Any		
RATINGS			
Filament Voltage DC	1.4 Volts		
Filament Current	50 Ma.		
Maximum Plate Voltage	110 Volta 110 Volta		
Maximum Screen Supply Voltage Maximum Screen Voltage	65 Volts		
Maximum Anode Grid Voltage			
Maximum Cathode Current.	4.0 Ma.		
Minimum Signal Grid Circuit Resistance	1.U Niegonin		

1L6 (Cont'd)

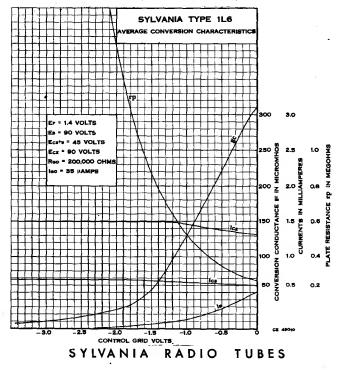
Direct Interelectrode Capacitances:

Unshielded

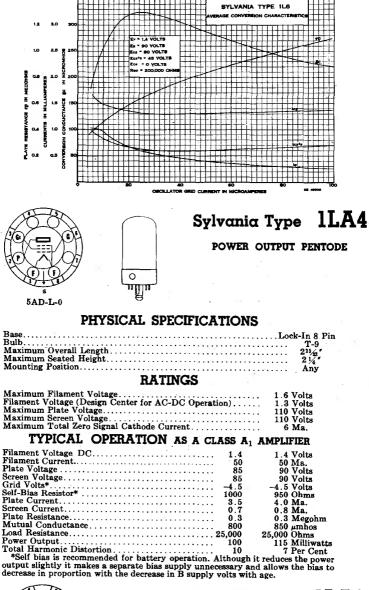
Shielded*

Grid G to Plate	0.30	0.45 µµf Max.
Grid G to Grid Ga	0.24	0.24 µµf
Grid G to Grid Go	0 19	0.19 µµf
Grid Go to Grid Ga	0.80	$0.80 \mu\mu f$
Grid G to All (RF Input)	7.5	7.5 µµf
Grid Ga to All except Go (Oscillator Output)	2.6	2.6 µµf
Grid Go to All except Ga (Oscillator Input). Plate to All (Mixer Output).	2.2	2.2 µµf
Grid Go to Plate	12.0	7.0 μμf 0.15 μμf Max.
	0.10	0.15 μμι Max.

*With ¾" diameter shield (RMA Std. 316) connected to Pin 1.


TYPICAL OPERATION

Filament Voltage	1.4 Volts
Filament Current.	50 Ma.
Plate Voltage	90 Volts
Anode Grid Voltage (Ega).	90 Volts
Control Grid Voltage	O Wolts
Control Grid Circuit Resistance	0 Volts
Oscillator Grid Posician (Park)	1.0 Megohm
Oscillator Grid Resistor (Rgo).	0.2 Megohm
I LAUC INCOMPANIE (ADDIOX.)	11 65 Megohm
	0 5 Me.
Screen Current	06Mo
Anode Grid Current	1 2 Ma.
Oscillator Grid Current	0.035 Ma.
1 otal Cathode Current	2.35 Ma.
Conversion Transconductance	2.00 1110.
Control Grid Voltage at 0 Volts.	$300 \ \mu mhos$
Control Grid Voltage at -3.5 Volts (Approx.).	$10 \ \mu mhos$
Oscillator Mutual Conductance**	
Country of Bravelas Conductance "	550 μ mhos


**Not oscillating, Eb = 90 V, Egs = 45 V, Ega = 90 V, Eg and Ego = 0 V. *Obtained preferably by using a properly bypassed dropping resistor of from 45,000 ohms to 75,000 ohms in series with the B supply.

APPLICATION

Sylvania Type 1L6 is a miniature type pentagrid converter designed for use in low drain battery operated receivers. It is similar in construction and application to Types 1A7GT and 1LA6. The small size and low current requirements recommend it for use in small portable receivers.

(Cont'd) 1L6

Sylvania Type 1LA6 HEPTODE CONVERTER

PHYSICAL SPECIFICATIONS

 Base.
 Lock-In 8 Pin

 Bulb.
 T-9

 Maximum Overall Length
 2¹²6'

 Maximum Seated Height
 2¹⁴6'

 Mounting Position
 Any

1LA6 (Cont'd)

RATINGS

Maximum Filament Voltage Design Center for AC-DC Operation Maximum Plate Voltage Maximum Screen Supply Maximum Anode-Grid Voltage Maximum Anode-Grid Voltage	1.6 Volts 1.3 Volts 110 Volts 110 Volts 65 Volts 110 Volts 4.0 Ma.
Direct Interelectrode Capacitances:*	- · ·
Grid G to Plate	0.4 μμf
Mixer Input	7.5 µµf
Mixer Output	8.0 µµf
Oscillator Input	2.8 µµf
Oscillator Output	3 2 unf
*With 15% diameter tube shield (RMA Std. 308) connect filament.	ed to negative

TYPICAL OPERATION

Filament Voltage DC	1.4 Volts
Filament Current	50 Ma.
Plate Voltage	90 Volts
Screen Voltage**	45 Volts
Anode-Grid Voltage	90 Volts
Control Grid Voltage (G)	0 Volt
Oscillator Grid Resistor (Go)	200000 Ohms
Plate Resistance	0.75 Megohm
Plate Current	
Screen Current	0.6 Ma.
Anode-Grid Current	
Oscillator Grid Current	0.035 Ma.
Conversion Conductance	250 µmhos
Control Grid Voltage at -3 Volts.	$10 \ \mu mhos$

**Obtained preferably by using a properly by-passed voltage dropping resistor of 45,000 to 70,000 ohms in series with the "B" voltage supply. A resistance of at least 1 megohm should be in the grid return to negative fil.

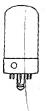
1LB4 Sylvania Type

POWER OUTPUT PENTODE

5AD-L-0

PHYSICAL SPECIFICATIONS

Base	
Bulb	Т-9
Maximum Overall Length	225/2
Maximum Seated Height	2 ¹ ⁄ ₄ *
Mounting Position	Any


RATINGS

Maximum Filament Voltage	1.6 Volts
Design Center for AC-DC Operation	
Maximum Plate Voltage	
Maximum Screen Voltage	
Maximum Cathode Current	6.0 Ma.

TYPICAL OPERATION

Filament Voltage DC 1.4	1.4	1.4	1.4 Volts
Filament Current	50	50	50 Ma.
Plate Voltage 45	62.5	67.5	90 Volts
Screen Voltage 45	62.5	67.5	90 Volts
Grid Voltage4.5	-5.0	-6.0	-9.0 Volts
Plate Current (Zero Signal) 1.6	3.8	3.8	5.0 Ma.
Screen Current (Zero Signal) 0.3	0.8	0.8	1.0 Ma.
Plate Resistance (Approx.) 0.4	0.3	0.3	0.25 Megohm
Mutual Conductance	875	\$75	925 μ mhos
Load Resistance	16000	16000	12000 Ohms
Power Output	90	100	200 Mw.
Total Harmonic Distortion 10	10	10	10 Per Cent

Sylvania Type 11

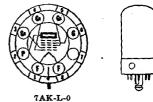
SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb	T- 9
Maximum Overall Length	$2^{25} + 2^{1} + 2^{1} + 2^{1} + 4^{1} + 2^{1} + 4^{1} + 2^{1} + 4^{1} + 2^{$
Maximum Seated Height	21/
Mounting Position	. Any

RATINGS

Maximum Filament Voltage Design Center for AC-DC Operation	1.6 Volts 1.3 Volts
Maximum Plate Voltage	110 Volts 45 Volts
Direct Interelectrode Capacitances:*	


Grid to Plate	🥮	

*With 15% diameter shield (RMA Std. 308) connected to negative filament

TYPICAL OPERATION

Filament Voltage DC	1.4	1.4 Volts
Filament Current	. 50	
Plate Voltage	. 45	
Screen Voltage	. 45	
Grid Voltage*	. 0	
SuppressorConn	ected to	Negative Filament at Socket
Plate Current		
Screen Current	35	.30 Ma.
Plate Resistance		1.5 Megohm Approx.
Mutual Conductance		
Grid Voltage for Ib=10 µa	3.4	-3.4 Volts
*A resistance of at least 1 megohm shou	ld be in	the grid return to negative
filament Pin No. 8.		

For data on use as a resistance coupled amplifier see appendix.

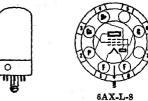
Sylvania Type 1LC6

HEPTODE CONVERTER

PHYSICAL SPECIFICATIONS

BaseLoc	k-In 8 Pin T-9
Bulb. Maximum Overall Length. Maximum Seated Height.	2254
Mounting Position	Any
RATINGS	
Maximum Filament Voltage	1.6 Volts
Design Center for AC-DC Operation	1.3 Volts
Maximum Plate Voltage	110 Volts
Maximum Screen or Anode Grid Supply	110 Volts
Maximum Anode-Grid Voltage	50 Volts
Maximum Screen Grid Voltage	45 Volts
Maximum Cathode Current	3.0 Ma.
Direct Interelectrode Capacitances :*	
Grid G to Plate	0.28 uuf.
Mixer Input.	
Mixer Output	
Oscillator Input.	
Oscillator Output	

*With 15% dia. tube shield (RMA Std. M8-308) connected to negative filament.


1LC6 (Cont'd)

TYPICAL OPERATION

Filament Voltage	1.4	1.4	Volts
Filament Current		0.050	Ampere
Plate Voltage	45		Volts
Screen Voltage*	35	35	Volts
Anode-Grid Voltage	45		Volts
Control Grid Voltage.	0	0	Volt
Oscillator Grid Resistor	200000	200000	
Plate Resistance	300000	650000	Ohms
Plate Current	0.7	0.75	Ma.
Screen Current	0.75	0.70	Ma.
Anode-Grid Current.	1.4	1.4	Ma.
Oscillator Grid Current	0.035	0.035	Ma.
Total Cathode Current	2.9	2.9	Ma.
Conversion Conductance:			
At 0 Volts	250	275	μmhos
At -2 Volts	50	50	µmhos
At -3 Volts	5	5	µmhos appr

1LD5 Sylvania Type

DIODE PENTODE

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb	T- 9
Maximum Overall Length	2254
Maximum Overall Length Maximum Seated Height Mounting Position	2 1/1
Mounting Position	Anv
Mounting Position	Any

RATINGS

Maximum Filament Voltage 1.6 Volts Design Center for AC-DC Operation 1.3 Volts Maximum Plate Voltage 110 Volts Maximum Diode Drop for 0.5 Ma. 50 Volts Diode plate located at negative end of filament. 10 Volts
Direct Interelectrode Cspacitances:* Grid to Plate

TYPICAL OPERATION

Filament Voltage DC Filament Current. Plate Voltage. Screen Voltage. Grid Voltage. Plate Current. Screen Current. Plate Resistance	50 45 45 0 0.55 0.12 900000	1.4 Volts 50 Ma. 90 Volts 45 Volts 0 Volt 0.6 Ma. 0.1 Ma. 750000 Ohms
Mutual Conductance		575 µmhos
For resistance coupled information pendix.	refer to	table in ap-

Sylvania Type 1LE3

PHYSICAL SPECIFICATIONS

PHISICAL SPECIFICATIONS	
BaseLock-In 8 Pin	
Bulb	
Maximum Overall Length	
Mounting Position	
RATINGS	
Maximum Filament Voltage 1.6 Volts	
Maximum Filament Voltage 1.6 Volts Design Center for AC-DC Operation 1.3 Volts Maximum Plate Voltage 110 Volts	
Direct Interelectrode Capacitances:*	
Grid to Plate. $1.7 \mu\mu f$.	
Grid to Plate	
*With 15% diameter shield (RMA Standard 308) connected to negative	
filament.	
TYPICAL OPERATION	
Filament Voltage DC. 1.4 1.4 Volts Filament Current. 0.050 0.050 Ampere Plate Voltage 90 90 Volts Grid Voltage* 0 -3 Volts Plate Current. 4.5 1.4 Ma.	
Plate Voltage	
Plate Voltage 90 90 Volts Grid Voltage* 0 -3 Volts Plate Resistance 1.4 Ma. Plate Resistance 1200 19000 Ohms	
Plate Current	
Mutual Conductance	
Mutual Conductance 1300 760 μmhos Amplification Factor 14.5 14.5 *Negative Filament return to Pin No. 8. 14.5	
For use in resistance coupled circuits, see appendix.	
	-
Sylvania Type ILG	5
	-
SEMI-REMOTE CUT-OFF	
RF PENTODE	
7AO-L-8	
PHYSICAL SPECIFICATIONS	
PHYSICAL SPECIFICATIONS Base Bulb T-9	
PHYSICAL SPECIFICATIONS Base Bulb T-9	
PHYSICAL SPECIFICATIONS Base Bulb T-9	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2½4" Maximum Seated Height 2¼" Mounting Position Any	
PHYSICAL SPECIFICATIONS BaseLock-In 8 Pin BulbT-9 Maximum Overall Length2 ¹² / ₄ " Maximum Seated Height2 ¹ / ₄ " Mounting PositionAny RATINGS	
PHYSICAL SPECIFICATIONS BaseLock-In 8 Pin BulbT-9 Maximum Overall Length2 ¹² / ₄ " Maximum Seated Height2 ¹ / ₄ " Mounting PositionAny RATINGS	
PHYSICAL SPECIFICATIONS BaseLock-In 8 Pin BulbT-9 Maximum Overall Length2 ¹² / ₄ " Maximum Seated Height2 ¹ / ₄ " Mounting PositionAny RATINGS	
PHYSICAL SPECIFICATIONS BaseLock-In 8 Pin BulbT-9 Maximum Overall Length2 ¹² / ₄ " Maximum Seated Height2 ¹ / ₄ " Mounting PositionAny RATINGS	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts Ac-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2 ¹² / ₄ " Maximum Seated Height 2 ¹⁴ / ₄ " Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts Ac-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 10	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2 ¹³ / ₂ " Maximum Seated Height 2 ¹⁴ / ₂ " Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts AC-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 007 unf. Max.	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2 ¹² / ₄ " Maximum Seated Height 2 ¹⁴ / ₄ " Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts Ac-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 10	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2 ¹³ / ₂ " Maximum Seated Height 2 ¹⁴ / ₂ " Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts AC-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 007 unf. Max.	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2 ¹² / ₄ " Maximum Seated Height 2 ¹³ / ₄ " Mounting Position 2 ¹³ / ₄ " Maximum State Voltage Must Never Exceed 1.6 Volts Maximum Plate Voltage 1.0 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 3.2 µf. Output 7.0 µµf. *With 1 ¹ / ₄ " diameter shield (RMA Std. 308) connected to negative filament.	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position 21% Mounting Position 21% Mounting Position 21% Maximum Seated Height 21% Mounting Position 21% Mounting Position 21% Maximum Seated Height 21% Maximum Seated Height 21% Maximum Pilaework Voltage Must Never Exceed 1.6 Volts Maximum Plate Voltage 1.3 Volts Maximum Screen Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 3.2 µd. Output 7.0 µµf. *With 1½ d' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position 21% Mounting Position 21% Mounting Position 21% Maximum Seated Height 21% Mounting Position 21% Mounting Position 21% Maximum Seated Height 21% Maximum Seated Height 21% Maximum Pilaework Voltage Must Never Exceed 1.6 Volts Maximum Plate Voltage 1.3 Volts Maximum Screen Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 3.2 µd. Output 7.0 µµf. *With 1½ d' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts AC-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate .007 µµf. Max. Input. 3.2 µd. Output 7.0 µµf. *With 1% ' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION Filament Voltage DC 1.4 1.4 1.4 Volts Filament Current. 50 50 50 Ma.	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2 ¹² / ₆ ' Maximum Seated Height 2 ¹⁴ Mounting Position Any Base Maximum Seated Height 2 ¹⁴ Mounting Position Any Base Maximum Position Any Base Maximum Plate Voltage Must Never Exceed 1.6 Volts Ac-DC Power Line Design Center 1.3 Volts Maximum Screen Voltage 110 Volts Direct Interelectrode Capacitances:* Grid to Plate 007 µµf. Max. Input 3.2 µd. Output 7.0 µµf. ***********************************	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position 21% Maximum Seated Height 21% Maximum Filament Voltage Must Never Exceed 1.6 Volts Ac-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 3.2 µµf. Output 7.0 µµf. *With 1½ d' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION Filament Voltage DC 1.4 1.4 1.4 Volts Filament Current 50 50 50 50 Filament Current 50 50 50 50 Filament Voltage 45 45	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2 ¹² / ₆ " Maximum Seated Height 2 ¹³ / ₆ " Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed Ac-DC Power Line Design Center 1.6 Volts Ac-DC Power Line Design Center 1.3 Volts Maximum Screen Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 007 µµf. Max. Input. 3.2 µµf. *With 1% '' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION Filament Voltage DC 1.4 1.4 1.4 Volts Filament Current 50 50 50 50 Screen Voltage 45 90 90 Volta 50 50 50 Control Grid Resistor 2.0 2.0 2.0 0.0 1.5 Volta	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2 ¹⁵ / ₆ " Maximum Seated Height 2 ¹⁵ / ₆ " Mounting Position 2 ¹⁵ / ₆ " Mounting Position 2 ¹⁵ / ₆ " Mounting Position 2 ¹⁵ / ₆ " Maximum Seated Height 2 ¹⁵ / ₆ " Mounting Position 2 ¹⁵ / ₆ " Maximum State Height 2 ¹⁵ / ₆ " Maximum State Oltage Must Never Exceed 1.6 Volts Ac-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 007 µµf. Max. Input 3.2 µf. Output 7.0 µµf. *With 1 ¹ / ₆ " diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION Filament Voltage DC 1.4 1.4 1.4 Volts Filament Current 50 50 50 Ma. Plate Voltage 45 90 90 Volts Screen Voltage 45 90 90 Volts	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb 7.9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts AC-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 007 µµf. Max. Input. 3.2 µf. Output. 7.0 µµf. *With 1% ' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION Filament Voltage 45 90 90 Volts Screen Voltage 45 90 90 Volts Screen Voltage 2.0 2.0 2.0 Megohm Screen Voltage 2.0 2.0 2.0 Megohm Suppressor Grid Connected to Negative Filament as Socket Plate Current 1.5 1.7 3.7 Ma.	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb 7.9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts AC-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 007 µµf. Max. Input. 3.2 µf. Output. 7.0 µµf. *With 1% ' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION Filament Voltage 45 90 90 Volts Screen Voltage 45 90 90 Volts Screen Voltage 2.0 2.0 2.0 Megohm Screen Voltage 2.0 2.0 2.0 Megohm Suppressor Grid Connected to Negative Filament as Socket Plate Current 1.5 1.7 3.7 Ma.	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position Any REATINGS Maximum Seated Height 21% Mounting Position Any REATINGS Maximum Filament Voltage Must Never Exceed 1 6 Volts Ac-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 6007 µmf. Max. Grid to Plate 007 µmf. Max. Input 3.2 µmf. Output 7.0 µmf. *With 1% ' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION Filament Voltage DC 1.4 1.4 1.4 Volts Filament Current 50 50 Ma. Plate Voltage 0 0 -1.5 Volts Control Grid Voltage 0 0 -1.5 Volts Control Grid Voltage 0.45 0.4 0.9 Ma. Streen Qurger	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb 7.9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts AC-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 007 µµf. Max. Input. 3.2 µµf. Output. 7.0 µµf. *With 1% ' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION Filament Voltage 45 90 90 Volts Screen Voltage 0 -1.5 0.0 Ma. Plate Voltage 45 90 90 Volts Control Grid Voltage 0 0 -1.5 Volts Screen Voltage 0 0 -1.5 Volts Control Grid Voltage 0.0 2.0 2.0 Megohm Suppressor Grid Connected to Negative Filament at Socket Plate Current 1.5	
PHYSICAL SPECIFICATIONS Base Lock-In 8 Pin Bulb 7.9 Maximum Overall Length 21% Maximum Seated Height 21% Mounting Position Any RATINGS Maximum Filament Voltage Must Never Exceed 1.6 Volts Ac-DC Power Line Design Center 1.3 Volts Maximum Plate Voltage 110 Volts Maximum Screen Voltage 110 Volts Direct Interelectrode Capacitances:* 007 µµf. Max. Grid to Plate 007 µµf. Max. Input. 3.2 µd. Output. 7.0 µµf. *With 1% d' diameter shield (RMA Std. 308) connected to negative filament. TYPICAL OPERATION Filament Voltage DC. 1.4 1.4 1.4 Volts Filament Voltage OC. 2.0 2.0 2.0 Max. Plate Voltage 45 90 90 Volts Screen Voltage 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <td></td>	

1LH4 Sylvania Type

DIODE HIGH-MU TRIODE

PHYSICAL SPECIFICATIONS

Base	Lock-In 8Pin
Bulb	Т-9
Maximum Overall Length	23%
Maximum Seated Height	2 1/4
Mounting Position	Any
-	

RATINGS

Maximum Filament Voltage	1.6 Volts
Design Center for AC-DC Operation	1.3 Volts
Maximum Plate Voltage Maximum Diode Drop at 0.5 Ma	110 Volts
Maximum Diode Drop at 0.5 Ma	IV VOIUS

TYPICAL OPERATION

Filement Valter DO		1 A Walte
rnament voltage DC		I.4 VOILS
Filament Current		50 Ma.
Plate Voltage		90 Volts
Grid Voltage*		0 Volt
Plate Current		0.15 Ma.
*A register of at least 1 m	egohm should be in the grid retu	rn so negetive filement
A reason of at least 1 II	shown succer as it the Run Letn	III SO HEBSUAE INSTITUTIO

pin No. 8. Note; Diode plate location at negative end of filament.

For use in resistance coupled circuits, see appendix.

1LN5 Sylvania Type

SHARP CUT OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base Lock-In 8 Pin Bulb T-9 Maximum Overall Length 2 ¹¹ / ₄ " Maximum Seated Height 2 ¹⁴ / ₄ " Mounting Position Any
RATINGS
Maximum Filament Voltage. 1.6 Volts Design Center for AC-DC Operation. 1.3 Volts Maximum Plate Voltage. 110 Volts Maximum Screen Voltage. 110 Volts
Direct Interelectrode Capacitances:*
Grid to Plate
TYPICAL OPERATION
Filament Voltage DC. 1.4 Volts Filament Current. 50 Ma. Plate Voltage 90 Volts

Filament Voltage DC	
Filament Current	50 Ma.
Plate Voltage	90 Volts
Screen Voltage	90 Volts
Grid Voltage*	0 Volt
Plate Current	1.6 Ma.
Screen Current	0.35 Ma.
Plate Resistance	1.1 Megohms Approx.
Mutual Conductance	
Mutual Conductance at -4.5 Volts (Approx.)	10 µmhos
*Negative filament return, Pins No. 8 and 5.	•

For use in resistance coupled circuits, see appendix.

5Y-1-7

Sylvania Type IN.

SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Direct Interelectrode Capacitances:* Grid to Plate
Input
Filament Voltage DC. 1.4 Volts Filament Current. 50 Ma. Plate Voltage 90 Volts Screen Voltage. 90 Volts Grid Voltage*. 0 Volt Plate Current. 1.2 Ma.
Filament Current. 50 Ma. Plate Voltage 90 Volts Screen Voltage. 90 Volts Grid Voltage*. 0 Volt Plate Voltage*. 0 Volt 1.2 Ma. 1.2 Ma.
Screen Current1.5 MegohmsPlate Resistance (Approx.)1.5 MegohmsMutual Conductance.750 μ mhosMutual Conductance at -3.2 Volts (Approx.)50 μ mhosMutual Conductance at -4 Volts (Approx.)5 μ mhos*Negative filament return, Pin No. 7.5 μ mhosFor Resistance Coupled Amplifier Data refer to type 1LN5

in appendix.

Sylvania Type 1N34 CRYSTAL DIODES

PHYSICAL SPECIFICATIONS

Style	See Outline
Connections	.025 Leads
Maximum Body Length. Maximum Body Diameter. Maximum Lead Length per Lead.	3/4''
Maximum Body Diameter	9/2"
Maximum Lead Length per Lead.	1 5%"
Mounting Position	Any
Temperature Range	-50 to +75° C.
Nominal Shunt Capacitance	1 uuf.
Cathode Terminal Indicated by Green Band on Body.	

RATINGS

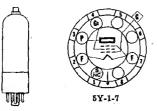
Peak Peak Transient Forward Inverse Cur- Surge Average Current Maximum Working rent Current Current At 1 Voit Reverse Current Type Voltage Ma. Ma. Ma. Ma. µa.	
$1N34 \oslash 60$ 150 500 40 5.0 50 at -10 y; 800 at -50 y	
1N35* 50 60 100 22.5 7.5 10 at -10 y	
1N38 0 100 150 500 40 3.0 6 at -3 v; 625 at -100	v
1N39 200 150 500 40 3.0 200 at -100 v; 800 at -2	00 v
$1N40 \neq 25$ 60 100 22.5 12.75 ⁺ 50 at -10 y	
$1N41 \phi$ 25 60 100 22.5 12.75† 50 at -10 y	
$1N42 \oint 50 60 100 22.5 12.75^{\dagger} 6 \text{ at } -3 \text{ v}; 625 \text{ at } -100$	v
1N54 = 35 150 500 40 5.0 10 at -10 y	
$1N55\overline{0}$ 150 150 500 40 3.0 300 at $-100 \text{ y}; 800 \text{ at} -100 \text$	50 v
1N56Ø 40 200 1000 50 15.0 300 at -30 v	
1N57 80 150 500 40 4.0 500 at -75 v	
1N58Ø 100 150 500 40 4.0 800 at -100 v	
1N60 50 150 500 40 ** **	
1N71f 40 200 1000 50 15.0 300 at -30 v	

*Type 1N35 consists of two Diode units mounted in a fibre assembly. The units

*1 ype 1N35 consists of two Diode units mounted in a fibre assembly. The units are matched within 10% for resistance in the forward direction at 1 volt. †At 1.5 volts. #Each unit contains 4 selected diodes matched within $\pm 2.5\%$ in the forward direction at 1.5 volts. ØAvailable in ceramic or glass cartridge. The letter A following the type number discussion of the type number discussion.

Wavelable in certain or glass cartridge. The letter A following the type number designates glass type. **Units are tested in a circuit employing an input of 1.8 volts rms at 40 me. 70% modulated at 400 cycles. Demodulated output across a 4700 ohm resistor shunted by a 5 μL capacitor is a minimum of 1.1 volts peak to peak. f/Consists of four matched low impedance germanium diodes each of which, with a voltage of one volt impressed in the forward direction, will pass a current within one ma. of the average current of the four. Ratings shown above are for each diode.

1N34 (Cont'd)

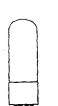

APPLICATION

Sylvania Germanium diodes are ruggedly built semi-conductors which may be used whenever a diode of their voltage and current rating is required. Their advantages are small size, no heater, low capacitance, no contact potential, and ruggedness.

A booklet describing their applications is available on request.

1P5^{GT} Sylvania Type

REMOTE CUT-OFF RF PENTODE


PHYSICAL SPECIFICATIONS

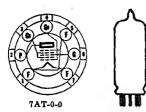
Base
BulbT-9 CapMiniature
Maximum Overall Length
Maximum Seated Height
Mounting Position Any Direct Interelectrode Capacitances:*
Grid to Plate
Input. $2.2 \mu\mu f$.
Output
*With $1\frac{1}{16}$ diameter shield (RMA 308) connected to negative filament.
TYPICAL OPERATION

Filament Voltage DC	1.4 Volts
Filament Current	50 Ma.
Plate Voltage	
Screen Voltage	
Grid Voltage*	
Plate Current	
Screen Current	
Plate Resistance (Approx.)	
Mutual Conductance.	750 μ mhos
Mutual Conductance at -12 Volts Bias	10 µmhos

*Negative Filament return, Pin No. 7.

1Q5^{GT} Sylvania Type

BEAM POWER AMPLIFIER


PHYSICAL SPECIFICATIONS

Base		T-9 3 ⁵ /6 2 ³ /4	
RATINGS			
Filament Voltage DC Filament Current Maximum Plate Voltage Maximum Screen Voltage Maximum Cathode Current at Zero Signal	$ \begin{array}{c} 10 \\ 11 \\ 11 \\ 11 \\ \end{array} $	0 Ma. 0 Volts 0 Volts	

(Cont'd) $1Q5^{GT}$

TYPICAL OPERATION

Filament Voltage DC Filament Current. Plate Voltage. Grid Voltage. Peak A-F Signal Voltage. Plate Current (Zero Signal). Screen Current (Zero Signal). Mutual Conductance. Load Resistance. Power Output. Total Hermonic Distortion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 Volts 0 Ma. 0 Volts 5 Volts 5 Volts 5 Ma. 6 Ma. 0 μmhos 0 Ohms 0 Mw. 0 Per Cent.
Total Harmonic Distortion	 5.5 6.	0 Per Cent

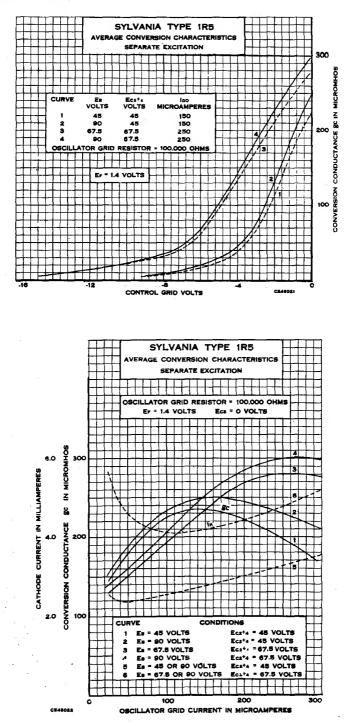
1R5 Sylvania Type

HEPTODE CONVERTER

-14 Volts

-9

PHYSICAL SPECIFICATIONS


Base Bulb			Miniat	T-5 ¹ / ₂
Maximum Overall Length Maximum Seated Height Mounting Position				$ \frac{218}{1.1} $
		INGS		
	na i	LIGD -		
Maximum Filament Voltage Desing Center for AC-DC Oper Maximum Plate Voltage	ration.			. 1.3 Volts . 90 Volts
Maximum Screen Voltage				. 67.5 Volts
Maximum Screen Supply				. 90 Volts
Maximum Cathode Current				. 5.5 Ma.
Direct Interelectrode Capacitan	ces:*			
Grid Go to Plate				. 0.10 μμf.
Signal Input.				. 7.0 μμf.
Mixer Output				. 7.5 μμf.
Oscillator Input				. 3.8 μμf.
Grid (G) to Plate				0.4 μμf. Max.
Grid (G) to Grid (Go)			• • • • • • • • • •	0.2 μμf. Max.
Grid (Go) to Plate	• • • • • •	•••••		0.1 μμf. Max.
*Without shield.				
TYPIC	AL C)PERATI	ON	
Filament Voltage	1.4	1.4	1.4	1.4 Volts
Filament Current	0.050	0.050	0.050	0.050 Ampere
Plate Voltage	45	67.5	90	90 Volts
Screen Voltage	45	67.5	45	67.5 Volts
Grid Voltage	0	0	0	0 Volt
Oscillator-Grid Resistor (Rgo)	0.1	0.1	0.1	0.1 Megohm
Plate Resistance (Approx.)	0.6	0.5	0.8	0.6 Megohm
Plate Current	$0.7 \\ 1.9$	$1.4 \\ 3.2$	0.8 1.9	1.6 Ma. 3.2 Ma.
Screen Current	0.15	0.25	0.15	0.25 Ma.
Total Cathode Current	2.75	5.0	2.75	5.0 Ma.
Conversion Conductance	235	280	250	$300 \ \mu mhos$
Grid Voltage (G) for Conver-	200	200	200	ovo pilitos
sion Conductance of 5 umbor	-9	-14	-9	-14 Volts

--9 -14 sion Conductance of 5 µmhos -

APPLICATION

Sylvania Type 1R5 is a pentagrid converter of the miniature line especially designed for mixer-oscillator service in com-pact, light weight, portable equipment. The operating efficiency allows the tube to be used with extremely low B. Supply voltages. The internal construction of the tube is similar to that of Sylvania Type 6SA7GT, with the exception of the filament. Circuit applications for Type 6SA7GT may be used for Sylvania type 1R5.

1R5 (Cont.)

7AV-0-0

Sylvania Type 1S4

POWER AMPLIFIER PENTODE

ş

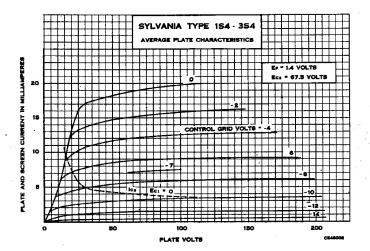
PHYSICAL SPECIFICATIONS

Base	ton 7-Pin
Bulb	T5 1⁄2
Maximum Overall Length	2 1/2
Maximum Seated Height	1 1/8
Mounting Position	Any

RATINGS

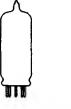
Maximum Filament Voltage	1.6 Volts
Design Center for AC-DC Operation	1.3 Volts
Maximum Plate Voltage	90 Volts
Maximum Screen Voltage	67.5 Volts
Maximum Cathode Current Zero Signal	9.0 Ma.
Maximum Cathode Current Maximum Signal	11.0 Ma.

TYPICAL OPERATION


CLASS & AMPLIFIER

Filament Voltage DC	1.4	1.4	1.4 Volts
Filament Current	0.100	0.100	0.100 Ampere
Plate Voltage	45	67.5	90 Volta
Screen Voltage	45	67.5	67.5 Volta
Grid Voltage*	-4.5	-7	-7 Volts
Peak A-F Signal Voltage	4.5	7	7 Volts
Zero Signal Plate Current	8.8	7.2	7.4 Ma.
Zero Signal Screen Current	0.8	1.5	1.4 Ma.
Plate Resistance (Approx.)	0.1	0.1	0.1 Megohm
Mutual Conductance	1250	1550	1575 μmhos
Load Resistance	8000	5000	8000 ohms
Power Output	65	180	270 Milliwatts
Total Harmonic Distortion	12	10	12 Per Cent

*Negative Filament Return, Pin No. 1

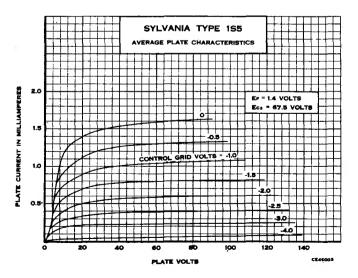

APPLICATION

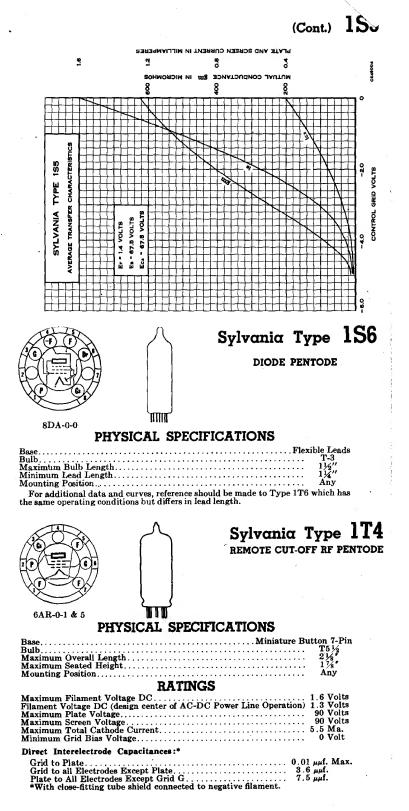
Sylvania Type 1S4 is a power amplifier pentode of the Miniature construction, especially designed for output service in compact, light weight, portable equipment. The high operating efficiency allows the tube to be used with extremely low B. Supply voltages.

1S5 Sylvania Type

DIODE PENTODE AMPLIFIER

PHYSICAL SPECIFICATIONS


Base. Miniature Button 7-Pin Bulb. T5 ½ Maximum Overall Length 2½ Maximum Seated Height. 1½ Mounting Position. Any			
RATINGS			
Maximum Filament Voltage 1.6 Volts Design Center for AC-DC Operation 1.3 Volts Maximum Plate Voltage 90 Volts Maximum Screen Voltage 90 Volts Maximum Signal Cathode Current 3.0 Ma. Maximum Diode Current 0.25 Ma.			
Direct Interelectrode Capacitances:*			
Grid to Plate 0.2 μμf. Input. 2.2 μμf. Output. 2.4 μμf. *With no external shielding. 2.4 μμf.			
TYPICAL OPERATION			
Filament Voltage DC. 1.4 1.4 Volts Filament Current. 50 50 Ma. Plate Voltage. 67.5 90 Volts Screen Voltage. 67.5 90 Volts Grid Voltage. 0 0 Volts Plate Voltage. 0 0 Volts Screen Current. 1.6 2.7 Ma. Screen Current. 0.4 0.5 Ma. Plate Resistance (Approx.). 0.6 0.5 Megohm. Mutual Conductance. 625 720 µmhos			

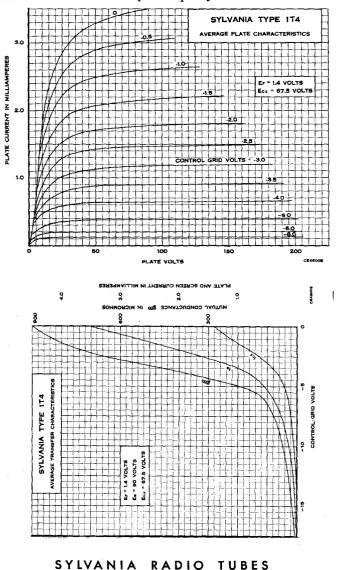

Note: Diode plate located at negative end of filament.

APPLICATION

Sylvania Type 1S5 is a diode pentode of the miniature construction, especially designed for detector-audio service in compact, light weight, portable equipment. The high operating efficiency allows the tube to be used with extremely low B supply voltages. The internal construction of Type 1S5 is similar to that of Sylvania Type 1LD5.

For use in resistance coupled circuits, see appendix.

SYLVANIA RADIO TUBES


j

TYPICAL OPERATION

Filament Voltage DC	1.4	1.4	1.4	1.4 Volts
Filament Current	50	50	50	50 Ma.
Plate Voltage	45	67.5	90	90 Volts
Screen Voltage	45	67.5	45	67.5 Volts
Grid Voltage	0	0	0	0 Volt
Plate Current	1.7	3.4	1.8	3.5 Ma.
Screen Current	0.7	1.5	0.65	1.4 Ma.
Plate Resistance (Approx.)	0.35	0.25	0.8	0.5 Megohm
Mutual Conductance	700	875	750	900 µmhos
Grid Voltage for 10 µmhos	-10	-16	-10	-16 Volts

APPLICATION

Sylvania Type 1T4 is a rf-if remote cut-off pentode of the miniature style of construction. It is especially designed for radio frequency amplifier service in compact, light weight, portable equipment. The high operating efficiency allows the tube to be used with extremely low B supply voltages. The construction incorporates internal shielding which is connected to minus filament, and eliminates the need for an external bulb shield. A shielded socket should be employed to obtain the minimum Grid-plate capacity.

Sylvania Type 17.

PENTODE POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base Intermediate	e Octal 7 Pin
Bulb	T- 9
Maximum Overali Length	
Maximum Seated Height	21/4
Mounting Position	Any

RATINGS

Maximum Filament Voltage	
Dry Battery Operation-Must Never Exceed	1.6 Volts
AC-DC Power Line Operation-Design Center	
Maximum Plate Voltage	110 Volts
Maximum Screen Voltage	110 Volts
Maximum Cathode Current (Zero Signal)	7.3 Ma.

TYPICAL OPERATION

	Self Bias	Fixed Bias
Filament Voltage	1.4	1.4 Volts
Filament Current	. 0.05	0.05 Ampere
Plate Voltage		90 Volts
Screen Voltage	. 84.0	90 Volts
Control Grid Voltage	6.0	-6.0 Volts
Plate Resistance (Approximate)	0.25	0.25 Megohms
Mutual Conductance		. 1150 μmhos
Plate Current (Zero Signal)		6.5 Ma.
Plate Current (Maximum Signal)		6.5 Ma
Screen Current (Zero Signal)	., 0.6	0.8 Ma.
Screen Current (Maximum Signal)	1.5	1.5 Ma.
Load Resistance		14000 Ohms
Total Harmonic Distortion	7.5	7.5 Per Cent
Power Output	145	170 Milliwatts

Sylvania Type **1T6**

DIODE PENTODE

PHYSICAL SPECIFICATIONS

Base	
Bulb	T-3
Maximum Overall Length	
Maximum Seated Height	11/5"
Mounting Position	Ány

RATINGS

Filament Voltage	1.25 Volts
Maximum Plate Voltage	67.5 Volts
Maximum Screen Voltage	67.5 Volts
Maximum Cathode Current (Pentode Section)	2.0 Ma.
Maximum Diode Current for continuous operation	0 25 Ma

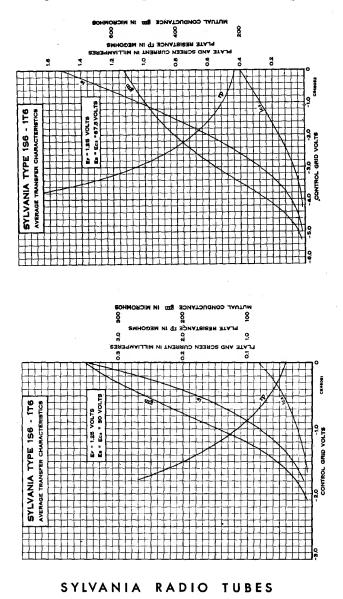
TYPICAL OPERATION

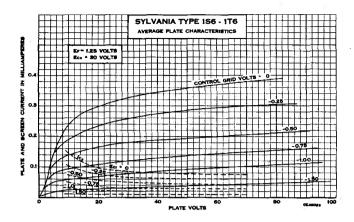
CLASS & OPERATION

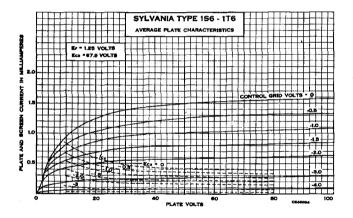
Filament Voltage DC.	1.25	1.25	1.25 Volts
Filament Current	40	40	40 Ma.
Plate Voltage	30	45	67.5 Volts
Screen Voltage	30	45	67.5 Volts
Grid Voltage	0	0	0 Volts
Plate Current.	0.33	0.75	1.6 Ma.
Screen Current	0.10	0.21	0.4 Ma.
Plate Resistance (Approx.)		0.5	0.4 Megohm
Mutual Conductance	330	475	$600 \ \mu mhos$
Average Diode Current with 10 Volts DC	1.5	1.5	1.5 Ma.

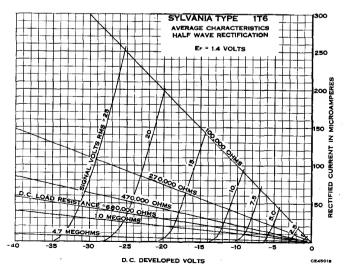
1T6 (Cont'd)

AS A RESISTANCE COUPLED AMPLIFIER


Bate Voltage 30 Screen Voltage 30 Voltage Gain (Approx.) 30 (1) (1) With Rc2=2.2 megohims Rb=1.0 megohims	45 45 50 (2 Ref=4
(2) With Rc2=3.9 megohms Rb=1.0 megohms'	Rcf=4


5 67.5 Volts 5 67.5 Volts 0 (2) 60 (2) cf=4.7 megohms cf=4.7 megohms


APPLICATION


Sylvania Type 1T6 is a diode audio pentode tube suitable for use in very small radio sets or amplifiers. The other types required for a normal set complement and designed for such usage are Types 1E8 (Converter), 1AD5 (RF Pentode Amplifier) and 1AC5 (Output Pentode). This tupe corresponde in corresponde in survive

This type corresponds in service and circuit design to Types 1LD5 and 1S5 but is rated for use at lower voltages. The gains are comparable considering the reduced size and voltages.

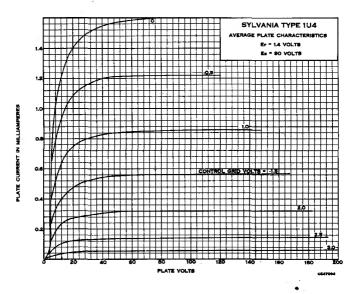
1U4 Sylvania Type

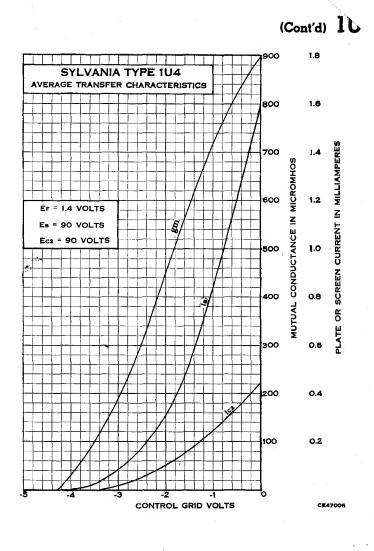
SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base	Miniature 7-Pin
Maximum Overall Length. Maximum Seated Height. Mounting Position.	T-5½
Maximum Overall Length	· · · · · · 2 ¹ / ₈ "
Maximum Seated Height	11/8"
Mounting Position	Any

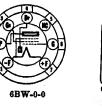
RATINGS


Maximum Filament Voltage Design Center for AC-DC Operation	1.6 Volts
Maximum Plate Voltage	110 Volts
Maximum Screen Voltage Maximum Control Grid Voltage	30 Volts
Minimum Control Grid Voltage	0 Volts 6.5 Ma.
Direct Interelectrode Capacitances:*	
Grid to Plate Input.	
Output. *With tight fitting external shield.	


TYPICAL OPERATION

Filament Voltage DC.	
Filament Current	50 Ma.
Plate Voltage	90 Volts
Screen Voltage	
Control Grid Voltage	
Plate Resistance (Approx.)	1.5 Megohms
Mutual Conductance	900 umhos
Plate Current	1.6 Ma.
Screen Current	0.45 Ma.
Grid Bias Voltage for Mutual Conductance of 10 umhos	-4.5 Volts

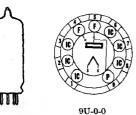
APPLICATION


Sylvania Type 1U4 is a sharp cut-off RF pentode very similar in application and characteristics to Type 1LN5. Data required for its use in resistance coupled amplifier circuits are shown in appendix.

Sylvania Type 1U5

DIODE PENTODE AMPLIFIER

Base


PHYSICAL SPECIFICATIONS

Bulb. Maximum Overall Length. Maximum Seated Height.

Note: With the exception of the base diagram given above, the characteristics of type 1U5 are identical, except for Capacitances, with those given for type 185 including curves, and Resistance Coupled Amplifier data given in appendix.

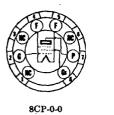
1V2 Sylvania Type

HALF WAVE VACUUM RECTIFIER

PHYSICAL SPECIFICATIONS

Base,	 . Miniature-Button 9-pin
Bulb Maximum Overall Length Maximum Seated Height	
Maximum Overall Length	
Maximum Seated Height	 1 ¹⁵ / ₁₆ "
Mounting Position	 Any

RATINGS

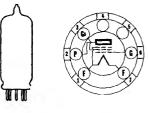

Heater Voltage (AC)	0.625 Volts
Heater Current	
Peak Inverse Plate Voltage (Max.)	
Peak Plate Current (Max.)	10 Ma.
Average Plate Current (Max.)	0.5 Ma.
Direct interelectrode Capacitance (Approx.) with no external	
shield Plate to Filament	0.8 μμf.

APPLICATION

Sylvania Type 1V2 is a half-wave rectifier designed especially for use in television circuits using fly-back or high frequency oscillator supplies.

1V5 Sylvania Type

OUTPUT PENTODE


PHYSICAL SPECIFICATIONS

Base	Flexible Leads
Bulb	T-3
Maximum Bulb Length	$1\frac{1}{2}''$ $1\frac{1}{4}''$
Minimum Lead Length	11/4"
Mounting Position	Any
For additional data and curves, reference should be made to Typ	e 1AC5 which

has the same operating conditions but differs in lead length.

1W4 Sylvania Type

POWER AMPLIFIER PENTODE

5BZ-0-0

PHYSICAL SPECIFICATIONS

Base	Button 7-pin
Bulb	$\begin{array}{ccc} T5\frac{1}{2}\\ 2\frac{1}{8}''\\ 1\frac{7}{8}''\end{array}$
Maximum Overall Length	. 21//
Maximum Seated Height	. 11/8"
Mounting Position	. Ány

RATINGS

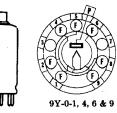
Filament Voltage Maximum Plate Voltage Maximum Screen Grid Voltage Maximum Cathode Current	 <i></i>	<i></i>	110 Volts
TYPIC	AL OF	PERATI	ON	
Filament Voltage DC	1.4	1.4	1.4	1.4 Volts
Filament Current	50	50	50	50 Ma.
Plate Voltage	45	62.5	67.5	90 Volts
Screen Voltage	45	62.5	67.5	90 Volts
Grid Voltage	-4.5	-5.0	-6.0	-9.0 Volts
Plate Current	1.6	3.8	3.8	5.0 Ma.
Screen Current	0.3	0.8	0.8	1.0 Ma.
Plate Resistance (approx.)	0.4	0.3	0.3	0.25 Megohms
Mutual Conductance	650	875	875	925 µmhos
Load Resistance	20.000	16.000	16.000	12,000 Ohms
Power Output	35	90	100	200 Milliwatts
Total Harmonic Distortion	10	10	10	10 %

APPLICATION

Sylvania Type 1W4 is a miniature filament type power output tube for use in low drain battery operated receivers. Electrical characteristics are identical with those for Type 1LB4, including design for maximum power output with low B supply voltage.

Sylvania Type 1W5

SHARP CUT-OFF RF PENTODE


8CP-0-0

PHYSICAL SPECIFICATIONS

Base	Flexible Leads
Bulb	T 2
	11/2//
Minimum Lead Length	11///
Mounting Position.	174
	Any
For additional data and curves, reference should be made to Typ	e 1AD5 which
has the same operating conditions but differs in lead length.	

1X2 Sylvania Type

HIGH VOLTAGE HALF-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

Base		
Bulb		
Cap		Skirted Miniature
Maximum Overall 1	ength	
Mounting Position.		Апу

RATINGS AND OPERATION

Filament Voltage	1.25 Volts
Filament Current	200 Ma.
Peak Inverse Plate Voltage (Max.)	15,000 Volts
Peak Plate Current (Max.)	10 Ma.
DC Output Current (Max.)	1 Ma.
Frequency of Supply Voltage (Max.).	

APPLICATION

Sylvania Type 1X2 is a high voltage, half-wave rectifier. It is designed for use in television circuits using either rf or flyback type of power supply, as well as for use at power line frequency. See type 1B3GT for suggestions on reducing corona loss etc.

2X2A Sylvania Type

HIGH VOLTAGE HALF-WAVE

RECTIFIER

PHYSICAL SPECIFICATIONS

Base	
Bulb	ST12
Cap. Maximum Overall Length Maximum Seated Height Mounting Position	
Maximum Overall Length	 417.6"
Maximum Seated Height	 3292"
Mounting Position	 Anv
mounter a constant	

RATINGS AND OPERATION

Heater Voltage	2.5 Volts
Heater Current	1.75 Amperes
Maximum RMS Plate Voltage	4500 Volts
Peak Inverse Plate Voltage	12,500 Volts
Peak Plate Current	
Minimum Effective Plate Supply Impedance	0 Ohms
DC Output Current (Maximum)	7.5 Ma.

APPLICATION

Sylvania Type 2X2/879 is a high voltage, high vacuum half wave rectifier. It is designed for use in applications requiring high DC voltages at low current loads such as for anode supplies for cathode ray tubes. Filter requirements for this type of service are easily met since a simple resistive, capactive filter is usually adequate. Care should be taken to provide adequate insulation as in any high voltage installation.

Sylvania Type 3A4

POWER AMPLIFIER PENTODE

PHYSICAL SPECIFICATIONS

Base	on 7 Pin
Bulb. Maximum Overall Length. Maximum Seated Height. Mounting Position.	T51/2
Maximum Overall Length	21/8
Maximum Seated Height	1 1/8"
Mounting Position	Any

TYPICAL OPERATION

Filament Voltage		1.4 or 2.8* Volts
Filament Current.		
Plate Voltage	135	150 Volts
Screen Voltage		
Grid Voltage		-8.4 Volts
Plate Current	14.8	13.3 Ma.
Screen Current		2.2 Ma.
Mutual Conductance		1900 µmhos
Load Resistance		8000 Ohms
Power Output Maximum Signal	600	700 Mw.

*For operation at 2.8 volts (filaments in series) a shunting resistor must be connected between pins 1 and 5 to make the voltage at this point equal to that across pins 5 and 7.

APPLICATION

Sylvania Type 3A4 is a miniature power amplifier pentode. It is similar to types 3Q4 and 3S4, but has higher plate voltage and current ratings with greater power output.

Sylvania Type 3A8^{GT}

DIODE TRIODE RF PENTODE

PHYSICAL SPECIFICATIONS

Base			Intermediate Octal 8-Pin
Bulb			T-9 Miniature
Cap			Miniature
Maximum Overal	I Length		
Maximum Seated	Height	• • • • • • • • • • • • • • • • • • •	21%
Mounting Positio	n		Any

RATINGS

	Series	Parallel	
Maximum Filament Voltage			
Dry Battery Operation Must Never Exceed	3.2	1.6 Volts	
AC-DC Power Line Operation Design Center	2.6	1.3 Volts	
Maximum Plate Voltage		1.0 1000	
Pentode	110	110 Volts .	
	110		
Triode		110 Volta	
Maximum Screen Voltage	110	110 Volts	
Maximum Screen Voltage Minimum Diode Current with 10 Volts DC applied*	0.5	0.5 Ma.	
Maximum Diode Current Continuous Operation	0.25	0.25 Ma.	•
	Triode	Pentode	
Direct Interelectrode Capacitances:			
Grid to Plate	2.0	0.012 µµf. Ма	τ.
Innut	2.6	3.0 µµf.	" .
Input,			-
Output	4.2	10 0 µµ1.	

*The diode triode filament is connected to pins 1 and 7. The diode is located at the negative end of the filament. †With 1⁵/₆" diameter shield (RMA Std. 308) Connected to Negative Filament.

3A8GT (Cont'd)

TYPICAL OPERATION

	Series	Parallel
Filament Voltage DC	2.8	1.4 Volts
Filament Current		50 Ma.
	Triode	Pentode
Plate Voltage	. 90	90 Volts
Screen Voltage		90 Volts
Grid Voltage**	. 0	0 Volt
Plate Resistance (Approximate)	. 0.2	0.8 Megohm
Mutual Conductance	. 325	750 μmhos
Plate Current	. 0.2	1.5 Ma.
Screen Current		0.5 Ma.

******Grid bias voltage is measured from the negative filament terminal of each unit. With Series filament, pin number 7 is the negative for the diode triode sec-tion and pin number 1 for the pentode section. With parallel filaments pin number 7 becomes negative for both.

Data for use in Resistance Coupled Amplifiers may be obtained by referring to types 1LN5 and 1LH4 in appendix.

3D6 Sylvania Type

BEAM POWER AMPLIFIER

6BB-L-0

PHYSICAL SPECIFICATIONS

Base	. .	Lock-In 8-Pin
Bulb		T-9
Maximum Overall Length		225 4 "
Maximum Seated Height		21/4
Mounting Position		Any
DETINOC		
RATINGS	Series	Parallel
Maximum Filament Voltage DC	8.5*	1.75* Volts
Minimum Filament Voltage DC	2.8	1.40 Volts
Filament Current	0.110	0.220 Ampere
Maximum Plate Voltage	180	180 Volts
Maximum Screen Voltage	135	135 Volts
Maximum Cathode Current§	30	30 Ma.
Maximum Plate Dissipation	4.5	4.5 Watts

 Maximum Plate Dissipation
 4.5
 4.5 Watts

 Maximum Screen Dissipation
 0.9
 0.9 Watt

 *For parallel operation, connect pins No. 1 and No. 8 to positive voltage supply, and pin No. 7 to negative voltage supply. For series operation, connect pin No. 1 to positive and pin No. 8 to negative.
 When series operated, a shunting resistor should be connected across the section of filament between pins No. 7 and No. 8 of sufficient value to by-pass any eathode current in access of the maximum per section. If other tubes in a series filament arrangement contribute to the filament current of Type 3D6, an additional shunting resistor may be required between pins No. 1 and No. 8.

 Direct Interelectode Capacitances:
 Note 1

Direct Interelectrode Capacitances:	Note 1	Note Z
Control Grid to Plate	0.80	0.30 µµf.
Input	7.5	7.5 µuf.
Output	5.5	6.5 µµ1.
Note 1. With no external shield (Pin No. 5 connected		
Note 2. With 15% diameter shield (RMA Std. M8-	308) conne	ected to negative
filament (Pin No. 5 connected to filament center tap).		

TYPICAL OPERATION	A-F	POWER	AMPLIFIER	CLASS A1
Filament Voltage		1.4	1.4	1.4 Volts
Filament Current		0.220	0.220 (220 Ampere
Plate Voltage		90	135	150 Volts
Screen Voltage		90	90	90 Volts
Grid Voltage		-4.5	-4.5	-4.5 Volts
Peak A-F Signal Voltage		4.5	4.5	4.5 Volts
Plate Current Zero Signal		9.5	9.8	9.9 Ma.
Plate Current Maximum Signal		8.5	9.8	10.2 Ma.
Screen Current Zero Signal		1.6	1.2	1.0 Ma.
Screen Current Maximum Signal		3.2	2.0	1.8 Ma.
Mutual Conductance.		2400	2400	2400 µmhos
Load Resistance		8000	12000	14000 Ohms
Total Distortion		5	5	5 Per Cent
Power Output		270	500	600 Mw.

Sylvania Type 3E6

SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base	Lock-In 8-Pin
Bulb	T-9
Maximum Overall Length Maximum Seated Height	225/22"
Maximum Seated Height	. 21/4"
Mounting Position	. Any

RATINGS

	Parallel	Series
Maximum Filament Voltage	1.6	3.2 Volts
Design Center for AC, DC Operation		2.6 Volts
Maximum Plate Voltage	110	110 Volts
Maximum Screen Voltage	110	110 Volts
Maximum Cathode Current	12.0	6.0* Ma.

For parallel filament operation, connect pins 1 and 8 to positive supply and pin 5 to negative supply. For series operation, pin No. 1 is positive and pin No. 8 is negative.

*For each 1.4 volt section. A shunting resistor across the negative filament sec-tion is necessary to limit current to value given.

Direct Interelectrode Capacitances:**

...0.007 μμf. Max. ... 5.5 μμf. ... 8.0 μμf.

TYPICAL OPERATION

	Parailel	Series
Filament Voltage DC	1.4	2.8 Volts
Filament Current	100	50 Ma.
Plate Voltage	90	90 Volts
Screen Voltage	90	90 Volts
Grid Voltage	0	0 Volt
Grid Resistor	2.0	2.0 Megohms
Plate Current		2.9 Ma.
Screen Current	1.7	1.2 Ma.
Mutual Conductance	2000	1700 µmhos
Plate Resistance	0.25	0.325 Megohm
Grid Voltage for Ib=10 µa	-5.5	-4.0 Volts

Sylvania Type 3LF4

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base	Lock-In 8-Pin
Bulb	T-9
Maximum Overall Length	225 42"
Maximum Seated Height	21/4"
Mounting Position	Any
DATINCIC	

RATINGS

Maximum Filament Voltage	Series*	Parallel †
Dry Battery Operation must never Exceed	3.2	1.6 Volts
AC-DC Power Line Operation-Design Center	2.6	1.3 Volts
Maximum Plate Voltage		110 Volts
Maximum Screen Voltage	110	110 Volta
Maximum Cathode Current.	6*	12 Ma.

3LF4 (Cont'd)

TYPICAL OPERATION **CLASS A AMPLIFIER**

	Series*			lieit	
Filament Voltage	2.8	2.8	1.4	1.4	1.4 Volts
Filament Current	0.050	0.050	0.100	0.100	0.100 Ampere
Plate Voltage	90	110	85	90	110 Volts
Screen Voltage	90	110	85	90	110 Volta
Grid Voltage	-4.5	-6.6	5.0	-4.5	-6.6 Volts
Peak A-F Signal Voltage	4.5	5.18	5.0	4.5	5.45 Volts
Plate Current.	8.0	8.5	7.0	9.5	10 Ma.
Screen Current	1.0	1.1	0.8	1.3	1.4 Ma.
Plate Resistance (App.)	80000	110000	70000	90000	100000 Ohms
Mutual Conductance	2000	2000	1950	2200	2200 µmhos
Load Resistance	8000	8000	9000	8000	8000 Ohms
Total Harmonic Distortion .	8.5	8.5	5.5	6.0	6.0 Per Cent
Power Output	230	330	250	270	400 Mw.

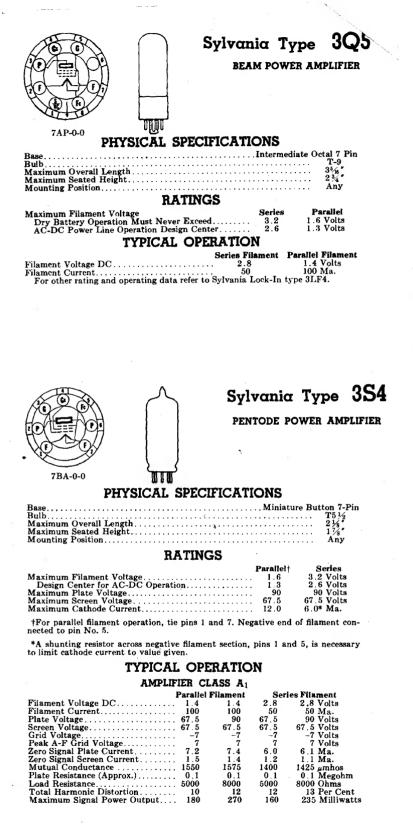
nection.

3Q4 Sylvania Type

BEAM POWER AMPLIFIER

7BA-0-0

PHYSICAL SPECIFICATIONS


Base	
Bulb Maximum Overall Length	$1 - 5 \frac{1}{2} = 2 \frac{1}{6}$
Maximum Overall Length Maximum Seated Height. Mounting Position	····· 13%
RATINGS	Any
RAIINGS	

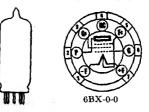
Filament Voltage	Parallel	Series
Dry Battery Operation Must Never Exceed		3.2 Volts
AC-DC Power Line Operation Design Center		2.6 Volts
Maximum Plate Voltage		90 Volts
Maximum Screen Voltage		90 Volts
Maximum Cathode Current (Zero Signal)*	12	6 Ma.
*When series filament connections are used a shunting	ng resistor	should be used
a harmony the manuficer flows and section (ming 1 and E) to line	mit opthod	a automomé és éla

across the negative filament section (pins 1 and 5) to limit cathode current to the value specified. If other tubes in a series filament string contribute to the filament current of the 3Q4, another resistor should be connected between pins 1 and 7 so consected between to carry any excess current over ratings.

TYPICAL OPERATION CLASS A1 AMPLIFIER

	Parallel	Filament	Series Filament
Filament Voltage DC	1.4	1.4	2.8 Volts
Filament Current	100	100	50 Ma.
Plate Voltage	85	90	90 Volts
Screen Voltage	85	90	90 Volts
Grid Voltage	-5.0	-4.5	-4.5 Volts
Peak Signal Voltage	5.0	4.5	4.5 Volts
Zero Signal Plate Current	6.9	9.5	7.7 Ma.
Zero Signal Screen Current	1.5	2.1	1.7 Ma.
Plate Resistance (Approximate)	0.12	0.10	0.12 Megohm
Mutual Conductance	1975	2150	$2000 \ \mu mhos$
Load Resistance	10000	10000	10000 Ohms
Total Harmonic Distortion	10	7	7 PerCent
Maximum Signal Power Output	0.25	0.27	0.24 Watt

SYLVANIA RADIO

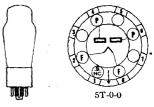

TUBES

APPLICATION

Sylvania Type 3S4 is a power amplifier pentode of miniature construction and is very similar to type 1S4 but designed for operation at either 1.4 volts or 2.8 volts. It is particularly suitable as an output tube in compact, light weight, portable equipment which may be operated on batteries or AC-DC power lines. The high operating efficiency allows the tube to be used with light weight low B supply voltages. Circuit applications are similar to those for Sylvania Types 1LB4 and 3Q5GT.

3V4 Sylvania Type

PENTODE POWER AMPLIFIER


PHYSICAL SPECIFICATIONS

Base	Miniature Button 7 Pin
Bulb	T-5 1/2
Maximum Overall Length	216
Maximum Seated Height.	ī½š*
Mounting Position	Any

Note: With the exception of the base diagram given above the characteristics of type 3V4 are identical with those of type 3Q4 given on a previous page.

5AX4^{GT} Sylvania Type

FULL WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

Base	Intermediate Octal 5-Pin	
Bulb	Т-9	
Maximum Overall Length	33/8"	
Maximum Overall Length. Maximum Seated Height	213 //	
Mounting Position	••	
Vertical		
Horizontal	ins 6 and 8 in vertical plane	

RATINGS

Filament Voltage AC or DC	5.0 Volts
Filament Current	2.5 Amperes
Maximum AC Plate Supply Voltage per Plate	
Capacitor Input.	350 Volts
Choke Input	
Maximum Peak Inverse Plate Voltage	1400 Volts
Maximum Peak Plate Current per Plate	
Steady State	525 Ma.
Transient	3.5 Amperes
Maximum DC Output Current	175 Ma.

TYPICAL OPERATION

FULL WAVE RECTIFIER

Input to Filter	Capacitor	Choke
Filament Voltage		5.0 Volts
AC Plate Supply Voltage per Plate	350	500 Volts
Filter Input Capacitance	10	μf. 10 Henries
Filter Input Inductance		10 Henries
Effective Plate Supply Impedance per Plate	50	Ohms
DC Output Current.	175	175 Ma.
DC Output Voltage	330	375 Volts
Tube Voltage Drop, with 175 Ma. DC Plate Current		
per Plate	6	5 ' Volts

Filament Current	2.0	2.0 Amperes
AC Plate Voltage Per Plate (RMS)	500	350 Volts
DC Output Current	125	125 Ma.
Minimum Plate Supply Impedance Per Plate		50 Ohms
Input Choke	10	Henrys

APPLICATION

Sylvania Type 5AZ4 is a lock-in full-wave filament type rectifier having the same ratings as Type 5Y3GT. Reference should be made to this type for the load curve under typical operating conditions.

Sylvania Type **5R4**^{GY}

FULL WAVE RECTIFIER

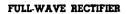
Base		
Bulb		ST-16
Maximum Overall Length Maximum Seated Height		
Maximum Seated Height		
Mounting Position*		Vertical
*Horizontal operation if pins 1 a	and 4 are in a vertical plane	э.
	RATINGS	
Filement Valtage AC on DC		5 O Valta

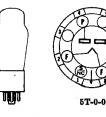
PHYSICAL SPECIFICATIONS

Filament Voltage AC or DC.	
Filament Current	2.0 Amperes
Maximum Peak Inverse Voltage (No-Load Conditions)	2800 Volts
Maximum Peak Plate Current	

TYPICAL OPERATION WITH CONDENSER-INPUT FILTER

AC Plate Voltage per Plate (RMS)		
Full Load		
No Load		
Total Effective Plate-Supply Impedance per Plate**		
DC Output Current (Maximum) 150 Ma.		
**For input condenser larger than 4 μ f. a larger plate-supply impedance may be	э	
necessary to limit peak plate current to the rated value.		
WITH CHOKE INPILT FILTER		


S-INPUT FILT AC Plate Voltage per Plate (RMS)


Full Load	
No Load	
Input-Choke Inductance (Minimum) DC Output Current (Maximum)	175 Ma.

APPLICATION

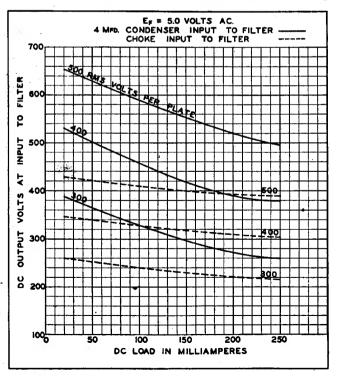
Sylvania Type 5R4GY is a full wave rectifier of the coated flament type. Operating conditions given above apply for use at altitudes up to 20,000 feet.

5U4G Sylvania Type

PHYSICAL SPECIFICATIONS

Base	ctal 5-Pin
Bulb	ST-16
Maximum Overall Length	55/16 "
Maximum Seated Height	4 3/4 "
Mounting Position	Vertical [†]
[†] Horizontal operation permitted if pins 1 and 4 are in vertical plane.	•

RATINGS


Filament Voltage (AC) Filament Current	5.0 Volts 3.0 Amperes
Peak Inverse Voltage	550 Volts
Peak Plate Current (Per Plate)	675 Ma.

TYPICAL OPERATION

1	Choke Input*	Condenser Input*
RMS Voltage Per Plate	550	450 Volts
DC Output Current (Maximum)		225 Ma.
Plate Supply Impedance (Minimum)		75 Ohms
Input Choke (Minimum)		Henrys
*Filter Circuit		

APPLICATION

Sylvania Type 5U4G is a high vacuum full-wave rectifier tube designed for heavier duty service than Type 5Y3G. Choke input filter arrangements are preferred for use with this tube, although somewhat higher plate supply voltages will be required to obtain the same output voltage obtained with condenser input filter circuits, but peak currents are reduced and voltage regulation is greatly improved under variable loads. Type 5U4G is identical to the older Type 5Z3 except for basing.

Sylvania Type 5V4G

FULL-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

Base		Medium Octal 5-Pin
Bulb		ST-14
Maximum Overall Length		
Maximum Seated Height		414"
Mounting Position		Any
	••••••••••••••••	

RATINGS

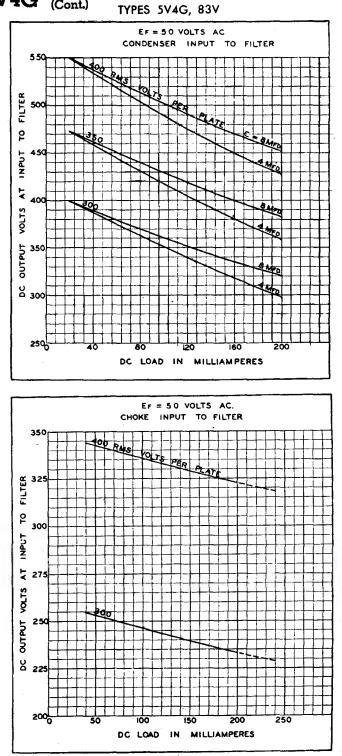
AC Heater Voltage	5.0 Volts
Heater Current	2.0 Amperes
Peak Inverse Voltage. Tube Voltage Drop at 175 Ma. Per Plate	25 Volts
Peak Plate Current (Per Plate)	525 Ma.

TYPICAL OPERATION

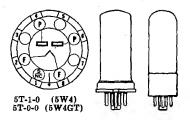
CONDENSER INPUT TO FILTER

AC Voltage per Plate (RMS)	.375 Volts Max.
DC Output Current	.175 Ma. Max.
Plate Supply Impedance per Plate	.100 @ms Min.

CHOKE INPUT TO FILTER


APPLICATION

Sylvania 5V4G is a cathode type high vacuum rectifier designed for full-wave applications. This glass tube is identical to Type 83V except that it is equipped with an octal base. It is important to note that the base of this rectifier may contain all eight pins, although only four of these are connected. Sockets designed for Type 5V4G must accommodate the eight pin base. The cathode is connected internally to the heater, similar to the 83V construction.


The filament voltage should be held close to its rated value of 5 volts. Since the filament current is rather high it is necessary to employ wire of the proper current carrying capacity.

to employ wire of the proper current carrying capacity. The performance of the 5V4G is quite similar to that of any other high vacuum rectifier. Conventional filter circuits, either of the condenser-input or choke-input type, are applicable but care must be exercised so as not to exceed the recommended maximum values of plate voltage and output current. Chokeinput filters will reduce the peak plate current and afford improved voltage regulation, although there will be a sacrifice in d-c output voltage.

SYLVANIA RADIO TUBES

5V4G (Cont.)

Sylvania Type 5W4^{GT}

۱

FULL-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

	5W4	5W4GT
Base	Small Wafer Octal 5-Pin	Medium Octal 5-Pin
Bulb.		Т-9
Maximum Overall Length	3 1/4 "	3 3/8 "
Maximum Seated Height	211,16	218 16 "
Mounting Position	Any	Any
D I MINIOG		

RATINGS

Filament Voltage AC	5.0 Volts
Filament Current	
Maximum Peak Inverse Voltage1	100 Volts
Tube Voltage Drop at 110 Ma. per Plate	50 Volts
Maximum Peak Plate Current (Per Plate)	300 Ma.

TYPICAL OPERATION

Filament Voltage AC	5.0 Volts
Filament Current	1.5 Amperes
RMS Voltage Per Plate	350 Volts
DC Output Current.	100 Ma.
Minimum Plate Supply Impedance	50 Ohms

FULL-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

IN

Base	Octal 8-Pin
Bulb	ST-16
Maximum Overall Length Maximum Seated Height Mounting Position.	55 16
Maximum Seated Height	4 1/4
[†] Horizontal operation permitted if pins 1 and 4 are in a vertical plan	e.

For operation data, and curves refer to corresponding Type 5U4G which is identical except for basing.

Sylvania Type 5Y3^{GT} Sylvania Type 5Y4G

FULL-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

	5Y3GT	5¥4G
BaseInterme	diate Octal 5-Pin	Medium Octal 8-Pin
Bulb	Т-9	ST-14
Maximum Overall Length	3 3/8 "	4 5/8"
Maximum Seated Height	3 3/8 " 2 ¹³ /16 "	41/16
Mounting Position		Vertical [†]
*Horizontal operation permitted if Pins	2 and 4 are in a v	ertical plane.

[†]Horizontal operation permitted if Pins 1 and 4 are in a vertical plane.

RATINGS

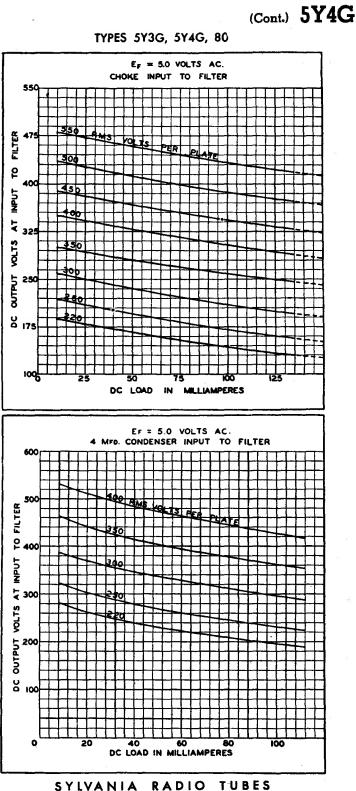
Filament Voltage AC	
Filament Current	2.0 Amperes
Maximum Peak Inverse Voltage	1400 Volts
Maximum Steady State Peak Current per Plate	375 Ma.
Maximum Transient Peak Current per Plate	2.2 Amperes
Average Tube Voltage Drop at 125 Ma. per Plate	60 Volts

The maximum values of plate supply voltage and output current are interrelated as well as dependent upon whether choke or condenser input is used. Intermediate values may be determined from the following table:

	Con	denser l	nput	Choke	e Input
AC Input per Plate (RMS) Output Current		$350 \\ 125$	70 150	$\frac{500}{125}$	350 Volts 150 Ma.

TYPICAL OPERATION

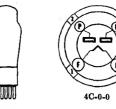
	Filter Circuit		
		Condenser Input	
Filament Voltage AC	5.0	5.0 Volts	
Filament Current	2.0	2.0 Amperes	
AC Plate Voltage per Plate (RMS)	500	350 Volts	
DC Output Current	125	125 Ma.	
Minimum Plate Supply Impedance per Plate		50 Ohms	
Input Choke	10	Henrys	


APPLICATION

Sylvania Types 5Y3GT and 5Y4G are full-wave vacuum type rectifiers similar to Type 80 and are used for supplying direct current power from an a-c power supply line.

The filament employed in these types is of the oxide coated type. This filament is operated on alternating current from a five volt winding on the power transformer. The filament voltage should be held close to its rated value of 5 volts. Since the filament current is rather high (2.0 amperes) it is necessary to employ wire of the proper current carrying capacity. It is unnecessary to provide the filament winding with a center tap for most applications.

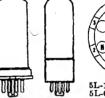
(Curves are shown on the following page).


ţ

(Cont.) **5Y3**^{GT} (Cont.) **5Y4C**

5Z3 Sylvania Type

FULL-WAVE RECTIFIER


PHYSICAL SPECIFICATIONS

Base	Medium 4-Pin
Bulb	ST16
Maximum Overall Length Maximum Seated Height	53%"
Maximum Seated Height.	434"
Mounting Position	Vertical†
the second secon	

[†]Horizontal operation permitted if pins 1 and 2 are in a vertical plane. For further data on this type, refer to corresponding Type 5U4G, which is identical except for basing.

5Z4^{GT} Sylvania Type

FULL-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

	5Z4	5Z4GT
Base	all Wafer Octal 5 Pin	Intermediate Octal 5 Pin
Bulb	Metal 8-6	Т9
Maximum Overall Length		3 3/8 "
Maximum Seated Height		3 3/8 " 2 ^{1 3} /16 "
Mounting Position		Any


RATINGS

Heater Voltage 5.0 Volt	s
Heater Current 2.0 Amp	oere
Peak Inverse Voltage	
Peak Plate Current per Plate	
Tube Drop at 125 Ma. per Plate 20 Volt	8

TYPICAL OPERATION

· · · · ·	Choke Input	Condenser Input
Heater Voltage	5.0	5.0 Volts
Heater-Current		2.0 Ampere
RMS Voltage Per Plate	500	350 Volts
DC Output Current		125 Ma.
Minimum Plate Supply Impedance Per Plate.		50 Ohms
Minimum Input Choke	5.0	Henrys

6A5G Sylvania Type

6**T**-0-0

PHYSICAL SPECIFICATIONS

Base	Octal 8 Pin
Bulb	ST16
Maximum Overall Length	53/8"
Maximum Seated Height	434"
Mounting Position	Any

(Cont'd) 6A5G

RATINGS

Heater Voltage	325 Amperes
Direct Interelectrode Capacitances:*	
Grid to Plate	16 μμf.
Input	7 μμf.
*Unshielded.	5 μμι.

TPYICAL OPERATION as Amplifier

	Class A	Push-Puil Class AB ₁ Two Tubes	
	One Tube	Fixed Bias	
Heater Voltage	6.3	6.3	6.3 Volts
Heater Current		1.25	1.25 Amperes
Plate Voltage		325	325 Volts
Grid Voltage	45	-68	Volts
Self-Bias Resistor	750		850 Ohms
Plate Current (Per Tube)	60	40	40 Ma.
Plate Resistance	. 800		Ohms
Mutual Conductance			µmhos
Amplification Factor			
Load Resistance (Total)	. 2500	3000	5000 Ohms
Power Output	. 3.75	15.	10 Watts
Harmonic Distortion		2.5	5.0 Per Cent

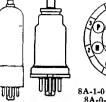
Sylvania Type 6A7

HEPTODE CONVERTER

7C-0-0

PHYSICAL SPECIFICATIONS

BaseBulb	. ST12
Cap Maximum Overall Length. Maximum Seated Height. Mounting Position	. Small Metal . 4 ¹⁷ /2" . 3 ²⁹ /2"
Mounting Position	. Any


RATINGS

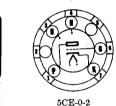
Heater Voltage AC or DC	
Heater Current	300 Ma.
Maximum Plate Voltage	300 Volts
Maximum Screen Voltage	100 Volts
Maximum Screen Supply	300 Volts
Maximum Anode-Grid Supply	300 Volts
Maximum Anode-Grid Voltage	200 Volts
Maximum Plate Dissipation	1.0 Watt
Maximum Screen Dissipation	0.3 Watt
Maximum Anode-Grid Dissipation	0.75 Watt
Maximum Cathode Current	14 Ma.
Maximum Heater-Cathode Voltage.	90 Volts

For typical operating conditions see Type 6A8G.

6A8G/^{GT}Sylvania Type

HEPTODE CONVERTERS

A-1-0 (6A8, GT 8A-0-0 (6A8G)


PHYSICAL SPECIFICATIONS

	6A8	6A8G	6A8GT
			Small Wafer
	Small Wafer	Small	Octal 8 Pin
Base	Octal 8 Pin	Octal 8 Pi	in Metal Sleeve
Bulb	Metal 8-4	ST12	Т9
Cap	Miniature	Miniature	
Maximum Overall Length	31/8"	417.62"	35/16 "
Maximum Seated Height	2%	329/2"	2 3/4
Mounting Position	Any	Any	Any
TYPICAL	OPERAL	ION	
Heater Voltage		6.3	6.3 Volts
Heater Current.		300	300 Ma.
Plate Voltage		100	250 Volts
Signal Grid Voltage			-3.0 Volts
Screen Voltage		50	100 Volts
Anode-Grid Voltage		100	250* Volts
Oscillator Grid Resistance.		50,000	50,000 Ohms
Plate Current		1.1	3.5 Ma.
Screen Current		1.3	2.7 Ma.
Anode-Grid Current		2.0	4.0 Ma.
Oscillator Grid Current		0.25	0.4 Ma.
Self-Bias Resistor		300	300 Ohms
Plate Resistance		0.5	0.3 Megohm
Conversion Conductance		360	550 μ mhos
Conversion Conductance at			
Signal Grid Bias of -20 (Approx.)		3	$\dots \mu mhos$
Signal Grid Bias of -35 (Approx.).			6 μmhos
*Through a 20,000 ohm resistor.			
For antings refer to Trune 647 Oth	on data mill h	a found und	on Look In Turno.

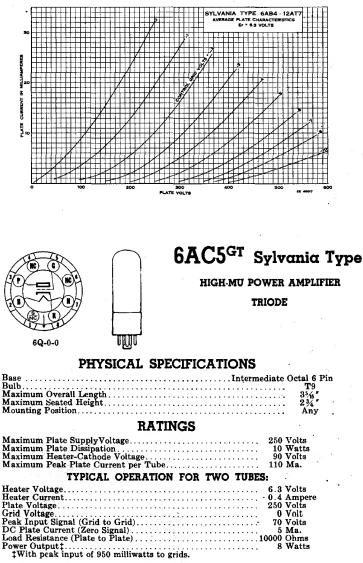
For ratings, refer to Type 6A7. Other data will be found under Lock-In Type 7B8 which is nearly identical in electrical characteristics.

6AB4 Sylvania Type

RF TRIODE

PHYSICAL SPECIFICATIONS

Base	Miniature .	Button 7-Pin
Bulb		. T-5½
Maximum Overall Length		$2\frac{1}{8}''$
Maximum Seated Height		. 11/8"
Mounting Position	<i>.</i>	. Any
RATINGS		
Heater Voltage AC or DC.		6.3 Volts
Maximum Plate Voltage		
Maximum Plate Dissipation		2.5 Watts
Maximum Heater-Cathode Voltage		90 Volts
Maximum Negative Control DC Grid Voltage		
Maximum Program Constor DC and Tonage		
Direct Interelectrode Capacitances:		
Direct Interelectrode Capacitances:	Shielded*	Unshielded
Direct Interelectrode Capacitances:	Shielded*	
Direct Interelectrode Capacitances: Grid to Plate	Shielded*	Unshielded
Direct Interelectrode Capacitances:	Shielded* . 1.5 . 2.4	Unshielded 1.5 μμf.
Direct Interelectrode Capacitances: Grid to Plate Input. Output.	Shielded* . 1.5 . 2.4	Unshielded 1.5 μμf. 2.2 μμf.
Direct Interelectrode Capacitances: Grid to Plate Input Output	Shielded* . 1.5 . 2.4 . 1.4	Unshielded 1.5 μμf. 2.2 μμf. 0.50 μμf.
Direct Interelectrode Capacitances: Grid to Plate Input Output (Grounded Grid Operation) Plate to Cathode	Shielded* 1.5 2.4 1.4 0.20	Unshielded 1.5 μμf. 2.2 μμf. 0.50 μμf. 0.24 μμf.
Direct Interelectrode Capacitances: Grid to Plate Input. Output. (Grounded Grid Operation) Plate to Cathode. Input.	Shielded* . 1.5 . 2.4 . 1.4 . 0.20 . 5.2	Unshielded 1.5 μμf. 2.2 μμf. 0.50 μμf. 0.24 μμf. 5.0 μμf.
Direct Interelectrode Capacitances: Grid to Plate. Input. Output. (Grounded Grid Operation) Plate to Cathode. Input. Output.	Shielded* . 1.5 . 2.4 . 1.4 . 0.20 . 5.2	Unshielded 1.5 μμf. 2.2 μμf. 0.50 μμf. 0.24 μμf.
Direct Interelectrode Capacitances: Grid to Plate Input. Output. (Grounded Grid Operation) Plate to Cathode. Input.	Shielded* . 1.5 . 2.4 . 1.4 . 0.20 . 5.2	Unshielded 1.5 μμf. 2.2 μμf. 0.50 μμf. 0.24 μμf. 5.0 μμf.


(Cont'd) 6AB4

TYPICAL OPERATION CLASS A, AMPLIFIER

Heater Voltage AC or DC	6.3	6.3 Volts
Heater Current	150	150 Ma.
Plate Voltage	100	250 Volts
Cathode Resistor	270	200 Ohms
Plate Current.	3.7	10 Ma.
Plate Resistance	15,000	10,900 Ohms
Mutual Conductance	4,000	$5,500 \ \mu mhos$
Amplification Factor	60	60
Control Grid Voltage (approx.) for $Ib = 10 \mu a$	-5	-12 Volts

APPLICATION

Sylvania Type 6AB4 is a miniature triode to be used as a ground-grid rf amplifier, frequency converter or oscillator at frequencies below 300 megacycles.

6AC7/¹⁸⁵² Sylvania Type

TELEVISION AMPLIFIER PENTODE

8N-1-1

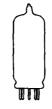
PHYSICAL SPECIFICATIONS

Base		
Bulb		Metal 8-1
Maximum Overall Length		2 1/8"
Maximum Seated Height.		2 ¹ /16"
Mounting Position		Any
RATINGS		
Heater Voltage		6.3 Volts
Heater Current		
Maximum Plate Voltage.		300 Volts
Maximum Screen Supply Voltage	· · · · · · · · · · · · · ·	300 Volts
Maximum Screen Voltage		150 Volts
Maximum Plate Dissipation	• • • • • • • • • • • •	
Maximum Screen Dissipation		
Maximum Grid Resistor*		. 0.00 Watt
Self Bias Fixed Screen Voltage		0.25 Megohm
Self Bias Series Screen Resistor		0.50 Megohm
Self-Bias Resistor (Minimum)	• • • • • • • • • • • •	160 Ohms
Maximum Heater-Cathode Voltage	•••••	90 Volts
*For maximum voltage conditions.	• • • • • • • • • • • •	. 30 Voits
······································		
Direct Interelectrode Capacitances:†		
Grid to Plate		
Input		
Output		. 5μμf.
With shell connected to cathode.		
TYPICAL OPERATION (CLASS A1	
Heater Voltage	6.3	6.3 Volts
Heater Current.		0.450 Ampere
Plate Voltage	300	300 Volts
Screen Supply Voltage	150	300 Volts
Screen Resistor.		60000 Ohms
Suppressor Grid Voltage		0 Volts
Self-Bias Resistor	160	160 Ohms
Plate Current.	10	10 Ma.
Screen Current	2.5	2.5 Ma.
Mutual Conductance	9000	9000 µmhos
Plate Resistance (Approximate)	1.0	1.0 Megohm

6AD4 Sylvania Type

HIGH MU TRIODE

PHYSICAL SPECIFICATIONS


Base Bulb	
Maximum Overall Bulb Length. Minimum Lead Length	1 3/8"
Mounting Position	Any
RATINGS	
Heater Voltage AC or DC.	. 6.3 Volts
Maximum Plate Voltage	150 Volts
Maximum Plate Dissipation	0.3 Watt
Maximum Heater-Cathode Voltage.	
Maximum Cathode Current.	2 Ma.
Maximum Control Grid Circuit Resistance (cathode bias)	. 1 Megohm
Direct Interelectrode Capacitances:	
Unshielde	
Grid to Plate	0.70 µµf.
Input 1.70	1,90 μμf.
Output. 0.70	2.20 μμf.

*External shield of 0.405" diameter connected to cathode.

(Cont'd) 6AD4

TYPICAL OPERATION CLASS A₁ AMPLIFIER

Sylvania Type 6AG5

SHARP CUT-OFF RF PENTODE

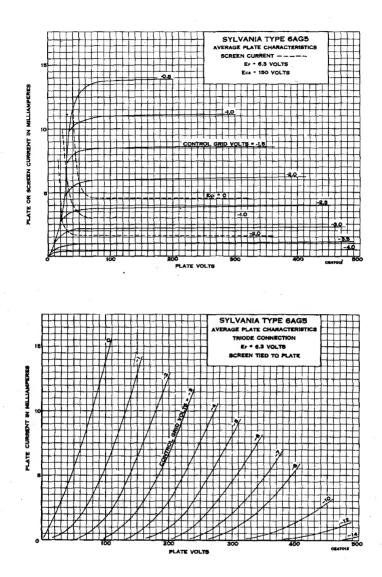
7BD-0-2 & 7

PHYSICAL SPECIFICATIONS

Base	
Bulb	į.
Maximum Overall Length	
Maximum Seated Height	
Mounting Position Any	
RATINGS	
naimes	
Heater Voltage AC or DC	lts
Heater Current	
Maximum Plate Voltage	
Maximum Screen Voltage	to
Maximum Plate Dissipation	100
Maximum Screen Dissipation	++
Maximum Heater-Cathode Voltage	Its
Direct Interelectrode Capacitances: (Without External Shield)	
Grid to Plate	a w
Input	<i>а</i> л.
Output. $1.8 \mu\mu$ f.	
Ομιραί	
TYPICAL OPERATION	
CLASS A ₁ AMPLIFIER	
1	

PENTODE CONNECTION

Heater Voltage	6.3 6.3	6.3 Volts
Heater Current	300 30	0 300 Ma.
Plate Voltage	100 12	5 250 Volts
Screen Voltage	100 12	5 150 Volts
Self-Bias Resistor	100 100) 200 Ohms
Plate Current	5.5 7.1	
	1.6 2.	
Grid Bias for 10 µa Plate Current	-5.0 -6.0	
Plate Resistance (Approx.)		
Transconductance	4750 510) 5000 µmhos
		-


TRIODE CONNECTION

Heater Voltage	6.3	6.3 Volts
Heater Current		300 Ma.
Plate Voltage	180	250 Volts
Self-Bias Resistor	350	825 Ohms
Plate Current	7.0	5.5 Ma.
Plate Resistance	7900	11,000 Ohms
Amplification Factor	45	42
Transconductance	5700	$3800 \ \mu mhos$

APPLICATION

Sylvania Type 6AG5 is a sharp cut-off pentode of miniature construction having high mutual conductance. It is useful as a RF amplifier for frequencies up to 400 megacycles. Input and output capacitances are low and the dual cathode leads aid in preventing degeneration, by providing the means for cathode return isolation.

6AG5 (Cont.)

Sylvania Type 6AG7

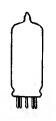
TELEVISION AMPLIFIER PENTODE

PHYSICAL SPECIFICATIONS

Base	
Bulb	al 8 -6
Maximum Overall Length	1/4"
Maximum Seated Height	1/16"
Mounting Position Ver	tical§
Horizontal if plane of pips number 2 and 7 is vertical	

Horizontal if plane of pins number 2 and 7 is vertica

RATINGS


Heater Voltage AC or DC Heater Current Maximum Plate Voltage Maximum Screen Voltage Maximum Plate Dissipation Maximum Screen Dissipation Minimum External Control Grid Voltage	0.650 Ampere 300 Volts 300 Volts 9.0 Watts
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances: Shell Connected to Cathode. Grid to Plate. Input. Output.	13.0 μμf.

TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Voltage
Heater Current
Plate Voltage
Screen Voltage
Control Grid Voltage*
Self-Bias Resistor
Peak AF Signal Voltage
Plate Resistance
Mutual Conductance 11000 µmhos
Zero Signal Plate Current
Maximum Signal Plate Current
Zero Signal Screen Current
Maximum Signal Screen Current
Load Resistance
Power Output
Total Distortion
*Maximum grid circuit resistance should not exceed 0.25 megohm if fixed bias

*Maximum grid circuit resistance should not exceed 0.25 megohm if fixed bias is used, or 1.0 megohm if self-bias is used.

Sylvania Type 6AH6

SHARP CUT OFF RF PENTODE

PHYSICAL SPECIFICATIONS

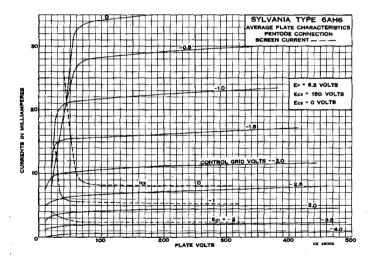
Base	Small	Button	Miniature 7 Pin
Bulb			T-516
Maximum Overall Length			$2\frac{1}{8}''$ $1\frac{7}{8}''$
Maximum Seated Height.		• • • • • •	17/11
Mounting Position	•••••	•••••	1 /8
Mounting Position		• • • • • •	Any
DATINGO			
RATINGS			
Heater Voltage AC or DC			6.3 Volts
Maximum Plate Voltage			300 Volts
Maximum Screen Voltage			150 Volte
Maximum Plate Dissipation		•••••	3 2 Watte
Maximum Screen Dissipation			0 4 Watto
Maximum Cathada Current	· • • • • • •		0.4 watts
Maximum Cathode Current			. 13.0 Ma.
Maximum Heater-Cathode Voltage			90 Volts

6AH6 (Cont'd)

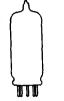
Direct Interelectrode Capacitances:*

Grid to Plate	.020 µµf. Max
Input	10 µµf.
Output	3.6 µµf.

Output. *With ¾" diameter shield (RMA No. 316) connected to cathode.


TYPICAL OPERATION

	Pentode Connection	Triode Connection
Heater Voltage AC or DC	6.3	6.3 Volts
Heater Current	450	450 Ma.
Plate Voltage	300	150
Screen Voltage		150
Suppressor Grid Voltage	tie to K	
Control Grid VoltageObtained	by 160 Ohm	Cathode Resistor
Plate Resistance (Approx.)	. 500,000	3600 Ohms
Mutual Conductance		$11,000 \mu mhos$
Amplification Factor		40
Plate Current	10	12.5 Ma.
Screen Current		Ma.
Control Grid Voltage for Ib=10 µa (Approx.)		-7.0 Volts


APPLICATION

Sylvania Type 6AH6 is a sharp cut-off pentode designed for use in television, video and I.F. circuits where wide band am-plification or low impedance output is required. The triode rating is to permit its use in cathode follower circuits. The suppressor grid is not designed to have a large enough

control characteristic for practical use.

6AJ5 Sylvania Type SHARP CUT-OFF PENTODE

PHYSICAL SPECIFICATIONS

Base		Miniature Button 7-Pin
Bulb		
Maximum Overall Length		
Mounting Position	• • • • • • • • • • • • • • • • • • • •	172 Any
Mounting rostion		

S Y LVA N I A RADIO TUBES

(Cont'd) 6AJ5

RATINGS

Heater Voltage AC or DC		. 6.3 Volts
Maximum Plate Voltage		. 180 Volts
Maximum Screen Supply Voltage		. 180 Volts
Maximum Plate Dissipation		. 1.7 Watts
Maximum Screen Dissipation		. 0.5 Watt
Maximum Positive Control DC Grid Voltage		. 0 Volts
Maximum Cathode Current		. 18 Ma.
Direct Interelectrode Capacitances:		
Direct Interelectrode Capacitances:	Shielded*	Unshielded
Grid to Plate	. 0.02	0.03 μμf.
Grid to Plate Input	. 0.02 . 4.0	
Grid to Plate	. 0.02 . 4.0	0.03 μμf. 4.0 μμf.

TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Voltage		
Heater Current	175 Ma.	
Plate Voltage	28 Volts	
Screen Grid Voltage	28 Volts	
Control Grid Voltage	-1 Volt	
Plate Resistance (approx.)	0.1 Megohm	
Mutual Conductance	2.500 umhos	
Plate Current.	2.7 Ma.	
Screen Grid Current	1 Ma.	
Control Grid Voltage for $Ib = 10 \ \mu a$.		
Control Only voltage for to $=$ 10 μ a	-3.0 10108	

Sylvania Type 6AK5

RF AMPLIFIER PENTODE

7BD-0-2 & 7

PHYSICAL SPECIFICATIONS

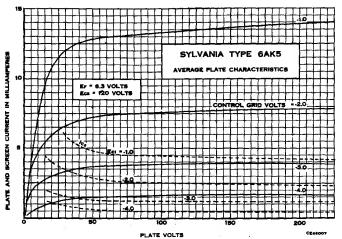
Base	1^{-5}_{4}
RATINGS	
Heater Voltage AC or DC Heater Current. Maximum Plate Voltage. Maximum Screen Volts. Maximum Plate Dissipation Maximum Screen Dissipation Maximum DC Heater-Cathode Voltage. Maximum Cathode Current.	6.3 Volts 0.175 Ampere 180 Volts 140 Volts 1.7 Watts 0.5 Watt 90 Volts 18 Ma.
Direct Interelectrode Capacitances:* Grid to Plate Input. Output.	0.02 μμf. Max. 4.0 μμf. 2.8 μμf.
*With a close fitting shield connected to the cathode	

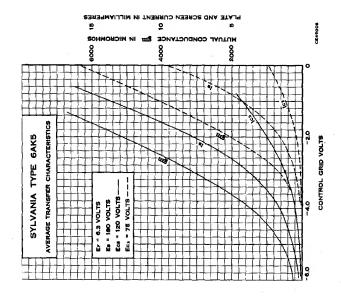
With a close fitting shield connected to the cathode.

SYLVANIA RADIO TUBES

1

6AK5 (Cont'd)


TYPICAL OPERATION CLASS A, AMPLIFIER


Heater Voltage	6.3	6.3 Volts
Heater Current	175	175 Ma.
Plate Voltage	120	180 Volts
Screen Voltage	120	120 Volts
Cathode Resistor**	180	180 Ohms
Plate Resistance (approx.)	0.30	0.50 Megohm
Mutual Conductance	5000	5100 μ mhos
Plate Current.	7.5	7.7 Ma.
Screen Current	2.5	2.4 Ma.

**Fixed Bias Operation is not recommended.

APPLICATION

Sylvania Type 6AK5 is a high-frequency, high mutual conductance pentode of miniature style of construction. It is intended for use at frequencies up to approximately 400 megacycles and the dual cathode leads, when properly used, help to isolate input and output circuits, thereby permitting greater gain per stage.

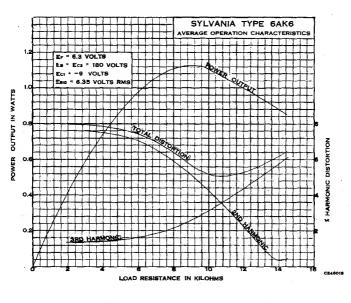
Sylvania Type 6AK6

PENTODE POWER AMPLIFIER

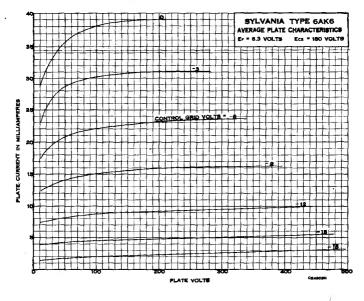
PHYSICAL SPECIFICATIONS

BaseMiniature l	Button 7-Pin
Pulk	T-516
Maximum Overall Length. Maximum Seated Height. Mounting Position.	$2\frac{1}{8}''$
Maximum Seated Height	17/8"
Mounting Position	. Any

RATINGS

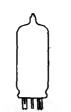

Heater Voltage AC or DC Heater Current. Maximum Plate Voltage. Maximum Screen Voltage Maximum Plate Dissipation Maximum Screen Dissipation Maximum DC Heater-Cathode Voltage	150 Ma. 300 Volts 250 Volts 2.75 Watts 0.75 Watts
Direct Interelectrode Capacitances:* Grid to Plate. Input. Output. *Without external shield.	0.12 μμf. 3.6 μμf.

TYPICAL OPERATION A.F. POWER AMPLIFIER


Heater Voltage	6.3 Volts
Heater Current	150 Ma.
Plate Voltage	180 Volts
Suppressor	hode at Socket
Screen Voltage	180 Volts
Grid Voltage	-9 Volts
Peak AF Grid Voltage	9 Volts
Zero Signal Plate Current	15 Ma.
Zero Signal Screen Current	2.5 Ma.
Plate Resistance	0.2 Megohm
Transconductance	2300 µmhos
Load Resistance	0,000 Ohms
Total Harmonic Distortion	
Maximum Signal Power Output	1.1 Watts

APPLICATION

Sylvania Type 6AK6 is a power amplifier pentode designed for use in compact light-weight radio equipment. It is similar in characteristics to Sylvania Type 6G6G.



6AK6 (Cont'd)

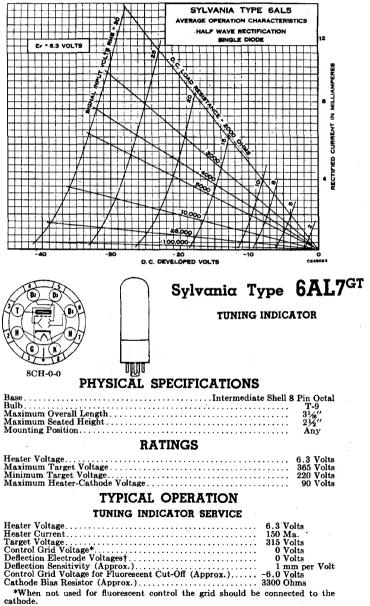
6AL5 Sylvania Type

DUODIODE

PHYSICAL SPECIFICATIONS

BaseMiniatur	e But	
Bulb		T5 ½
Maximum Overall Length		$1\frac{3}{4}$ " $1\frac{1}{2}$ "
Maximum Seated Height		112"
Mounting Position		Ány
RATINGS		
Heater Voltage AC or DC	63	Volts
Heater Current.		Ampere
Maximum Peak Inverse Plate Voltage		Volts
Maximum Peak Plate Current per Plate		Ma.
Maximum DC Output Current per Plate		Ma.
Maximum DC Heater-Cathode Voltage	330	Volts
Direct Interelectrode Capacitances:		
Unshield	ed	Shielded*
Plate Input each Unit		3.2 µµf.
Coupling Plate to Plate		.026 µµf.
Cathode Input each Unit		3.6 µµf.
*With a %" diameter shield (RMA Std. 316) connected to interv	nal ah	hield.

TYPICAL OPERATION

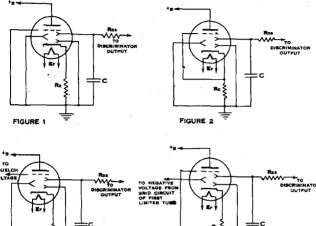

AS A HALF WAVE RECTIFIER

AC Voltage Per Plate (RMS)	117 Volts
Minimum Effective Plate Supply Impedance	300 Ohms
DC Output Current Per Plate	9.0 Ma.

APPLICATION

Sylvania Type 6AL5 is a double diode of miniature type of construction. It is designed especially for high-frequency operation having a resonant frequency per unit of approxi-mately 700 megacycles. Each diode unit is completely separate from the other and isolated by means of an internal shield thus permitting independent operation of each diode. In ratio detector service, use of a series resistor to operate the heater at a voltage of 5.3 volts is recommended. This pro-vides considerably lower hum output without loss of per-formance

formance.



 \dagger The illustration shows the fluorescent areas controlled by the deflection electrodes connected to D1, D2 and D3 respectively.

6AL7^{GT} (Cont'd)

APPLICATION

Sylvania Type 6AL7GT is a tuning indicator tube using the principle of the cathode ray tube and designed for use with FM circuits. The fluorescent coating is applied to a mica screen and the relative values of the voltages applied to the deflection electrodes are indicated by the location and size of the illuminated area.

COMMON CONDITIONS FOR ALL CIRCUITS

VOLTE ... 250 YOLTS D-C APPROXI MATE .

PATTERN RESPONSE IN VARIOUS CIRCUITS

1.0 MEG C = 0.08 MICROF D 2

CONTROL VOLTAGE SOURCE	SIG NAL	CIRCUIT (SEE FIGURE)	OFF CHANNEL	ON CHANNEL OFF TUNE (-)	ON TUNE	ON CHANNEL OFF TUNE (+)	OFF CHANNEL
DISCRIMINATOR	FM	1 AND 2					
DISCRIMINATOR AND SQUELCH	FM	3					
DISCRIMINATOR AND LIMITER	FM	4					
AVC	АМ	5					
SYLVANIA RADIO TUBES							

10

Sylvania Type 6AQ5

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base . . . T-5¹/2 2⁵/8" 2³/8" Maximum Seated Length. Maximum Seated Leight. Mounting Position. Anv RATINGS

 Heater Voltage AC or DC
 6.3 Volts

 Heater Current.
 450 Ma.

 Maximum Plate Voltage
 250 Volts

 Maximum Screen Voltage
 250 Volts

 Maximum Plate Dissipation
 12 Watts

 Maximum Pake Heater-Cathode Voltage
 90 Volts

 Maximum Screen Dissipation Maximum Peak Heater-Cathode Voltage. Maximum Grid-Circuit Resistance For Fixed Bias **Direct Interelectrode Capacitances:** Shielded † Unshielded 0.35 μμf. 7.6 μμf. 6.0 µµf. TYPICAL OPERATION AF POWER AMPLIFIER - CLASS A1

 AF FOWER ANDELITIEN - CLASS A

 Heater Voltage.
 6.3

 Heater Current.
 450

 Plate Voltage.
 180

 Screen Voltage.
 180

 Control Grid Voltage.
 85

 Peak AF Grid Voltage.
 8.5

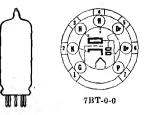
 Zero Signal Plate Current.
 29

 Maximum Signal Screen Current (Approx.)
 30

 Zero Signal Screen Current (Approx.)
 34

 Plate Resistance
 3700

 Load Resistance
 5500


 Total Harmonic Distortion
 8

 6.3 Volts 450 Ma. 250 Volts 250 Volts 12.5 Volts 12.5 Volts 45 Ma. 47 Ma. 52,000 Ohms 4100 ombes á 4100 μmhos 5000 Ohms Total Harmonic Distortion..... Maximum Signal Power Output..... 8 4.5 Watts 2.0 250 Volts 250 Volts 250 Volts 250 Volts 30 Volts 30 Volts 30 Volts 30 Volts 70 Ma. 79 Ma. 70 AF POWER AMPLIFIER - CLASS AB,*

Sylvania Type 6AQ5 is a beam power amplifier in the min-iature style designed for use in compact AC or auto sets. Since it is identical to Type 6V6GT except that the highest rating is not recommended, the same characteristic curves may be used. These are shown with Sylvania Type 7C5.

6AQ6 Sylvania Type

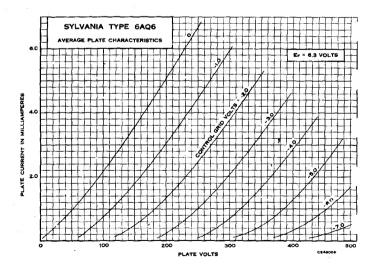
DUODIODE HIGH-MU TRIODE

PHYSICAL SPECIFICATIONS

Base	Miniature Button 7 Pin
Bulb	$T5\frac{1}{2}$
Maximum Overall Length	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Maximum Seated Height	
Mounting Position.	
into an ening a cost for the ening and the e	

RATINGS

Heater Voltage AC or DC	6.3 Volts
Heater Current	150 Ma.
Maximum Plate Voltage	300 Volts
Maximum Heater-Cathode Voltage	90 Volts


TYPICAL OPERATION

CLASS A1 AMPLIFIER

Heater Voltage	6.3	6.3 Volts
Heater Current	150	150 Ma.
Plate Voltage	100	250 Volts
Grid Voltage	-1.0	-3.0 Volts
Amplification Factor	70	70
Plate Resistance		58000 Ohms
Mutual Conductance		$1200 \ \mu mhos$
Plate Current	0.8	1.0 Ma.

APPLICATION

Sylvania Type 6AQ6 is a double diode, high-mu triode of miniature construction. It is similar to type 6Q7 but has lower heater drain and lower internal capacitances. Its small size facilitates the design of small compact receivers. Data for use in Resistance Coupled Amplifier Circuits may be found in the appendix under type 6Q7GT.

Sylvania Type 6AR5

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base	Miniature Button 7 Pin
Bulb	T-5½
Maximum Overall Length	
Maximum Seated Height	
Mounting Position	Any

RATINGS

Heater Voltage AC or DC	6.3 Volts
Maximum Plate Voltage	250 Volts
Maximum Screen Voltage	250 Volts
Maximum Plate Dissipation	8.5 Watts
Maximum Screen Dissipation	2.5 Watts
Maximum Heater-Cathode Voltage	90 Volts

TYPICAL OPERATION

Heater Voltage AC or DC	6.3	6.3 Volts
Heater Current	400	400 Ma.
Plate Voltage.	250	250 Volts
Screen Voltage	250	250 Volts
Grid Voltage*	-16.5	-18 Volts
Self-Bias Resistor	420	500 Ohms
Peak Signal Voltage	16.5	18 Volts
Plate Current (Zero Signal)	34	32 Ma.
Plate Current (Maximum Signal)	35	33 Ma.
Screen Current (Zero Signal)	5.7	5.5 Ma.
Screen Current (Maximum Signal)	10	10 Ma.
Plate Resistance (Approx.)	65,000	68,000 Ohms
Mutual Conductance	2,400	2,300 µmhos
Load Resistance	7,000	7,600 Ohms
Power Output	3.2	3.4 Watts
Total Harmonic Distortion	7	11 %

*Maximum grid circuit resistance should not exceed 0.5 megohms for self-bias operation, or 0.1 megohm for fixed bias operation.

APPLICATION

Sylvania Type 6AR5 is a miniature tube for use in locations where the space requirements do not permit use of the Types 7B5 or 6K6G, and which do not require the 315 volt rating. For curve data, reference should be made to Type 7B5.

Sylvania Type 6AS5

BEAM POWER AMPLIFIER

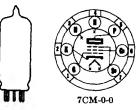
PHYSICAL SPECIFICATIONS

Base	T-51/2 25/8" 23/8"
RATINGS	
Heater Voltage AC or DC. Maximum Plate Voltage. Maximum Screen Voltage. Maximum Plate Dissipation . Maximum Heater-Cathode Voltage.	150 Volts 117 Volts 5.5 Watts 1.0 Watt
Direct Interelectrode Capacitances: (approx.)* Grid No. 1 (Control Grid) to Plate	12 µµf.

6AS5 (Cont'd)

TYPICAL OPERATION CLASS A, AMPLIFIER

Heater Voltage		6.3 Volts
Heater Current		0.8 Ampere
Plate Voltage		150 Volts
Screen Voltage		110 Volts
Control Grid Voltage*		
Peak AF Grid Voltage		
Plate Current (Zero Signal)		35 Ma.
Plate Current (Maximum Signal)		36 Ma.
Screen Current (Zero Signal)		2 Ma.
Screen Current (Maximum Signal)		6 5 Ma.
Mutual Conductance		600 umbos
Load Resistance		
Power Output (Maximum Signal)		
Total Harmonic Distortion		
*Maximum grid circuit resistance should a	not exceed 0.5 megohm	for self bias


*Maximum grid circuit resistance should not exceed 0.5 megohm for self bias operation, or 0.1 megohm for fixed bias operation.

APPLICATION

Sylvania Type 6AS5, a miniature beam power amplifier, is used in the output stage of automobile and ac operated receivers. It delivers relatively large power output at low plate and screen voltages.

6AS6 Sylvania Type

PENTODE WITH SUPPRESSOR CONTROL

PHYSICAL SPECIFICATIONS

Base	Mini	ature Button 7-Pin
Bulb Maximum Overall Length Maximum Seated Height Mounting Position		
Maximum Seated Height		····· 1½"
Mounting Position		Any

RATINGS

Maximum Cathode Current Direct Interelectrode Capacitances:		
Maximum Screen Dissipation		
Maximum Plate Dissipation		1.7 Watts
Maximum Screen Voltage		
Maximum Plate Voltage		180 Volts
Heater Voltage AC or DC	· · · · · · · ·	6.3 Volts 175 Ma

Grid to Plate	0,025	0.02 μµf.
Input	3.9	4.0 μμf. 3.0 μμf.
Output *External shield connected to pin #2 (cathode.)	2.2	3.0 μμι.

TYPICAL OPERATION

Heater Voltage	6.3	6 3 Volts
Heater Current		175 Ma.
Plate Voltage		120 Volts
Screen Voltage		120 Volts
Suppressor Voltage	-3	0 Volts
Control Grid Voltage		-2 Volts
Plate Current		5.2 Ma.
Screen Current	4.8	3.5 Ma.
Mutual Conductance, Control-Grid	1850	$3200 \ \mu mhos$ $470 \ \mu mhos$
Mutual Conductance, Suppressor Grid	810	470 μmhos

APPLICATION

Sylvania Type 6AS6 is a miniature pentode intended for low power applications at high and ultra-high frequencies. It can be used in delay circuits, mixers, gain controlled amplifiers, and gated amplifiers. The control grid and suppressor grid can be used as individual control elements.

Sylvania Type 6AS7G

LOW MU DUOTRIODE

PHYSICAL SPECIFICATIONS

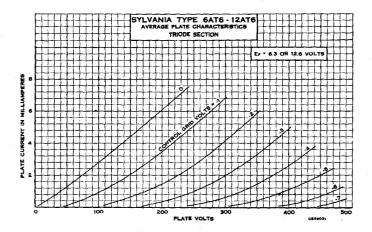
Base	
Bulb	ST-16
Maximum Overall Length	
Maximum Seated Height	
Mounting Position	

RATINGS

Heater Voltage AC or DC	6.3 Volts
Heater Current	2.5 Amperes
Maximum Plate Voltage	250 Volts
Maximum Plate Dissipation per Plate	13 Watts
Maximum Peak Heater-Cathode Voltage	300 Volts
Maximum Peak Inverse Plate Voltage	
Maximum Plate Current	125 Ma.

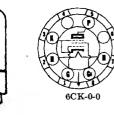
TYPICAL OPERATION AS A DIRECT COUPLED AMPLIFIER

Plate Supply Voltage	135 Volts
Grid VoltageObtained by Self	-Bias Resistor
Self-Bias Resistor	250 Ohms
Plate Current	
Plate Resistance	
Mutual Conductance	7000 µmhos
Amplification Factor	2.0


APPLICATION

Sylvania Type 6AS7G is a low mu duo triode power ampli-fier designed for television service as a booster scanner. Fixed bias operation is not recommended and the grid circuit resistance should not exceed 1 megohm.

7BT-0-0 PHYSICAL SPECIF	Sylvania Typ duodiode high ICATIONS	
Base Bulb Maximum Overall Length Maximum Seated Height Mounting Position Heater Voltage AC or DC. Heater Current.	5	T5 ½ 2 ½ 1 ½ Any
Maximum Plate Voltage Maximum Heater-Cathode Voltage Direct Interelectrode Capacitances:* Grid to Plate. Input	90 Ν 	/olts μf. μf.
Output. Diode No. 2 (Pin 5) to Grid. *Without external shield. TYPICAL OPER	025 µ	μf. Max.
Heater Voltage. Heater Current. Plate Voltage. Grid Voltage. Plate Current Amplification Factor. Plate Resistance. Mutual Conductance.	300 300 M 100 250 V	Ma. Volts Volts Ma. Dhms


Data for use in Resistance Coupled Amplifier Circuits may be found in the appendix under type 6Q7GT.

6AT6 (Cont'd)

6AU5^{GT} Sylvania Type

BEAM POWER AMPLIFIER TELEVISION SCANNER

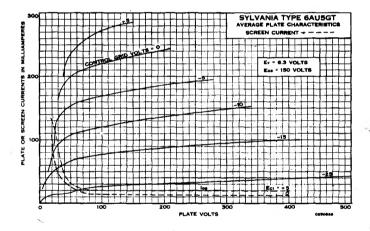
PHYSICAL SPECIFICATIONS

BaseBulb	
Maximum Overall Length Maximum Seated Height	
Mounting Position	Any
RATINGS	
Heater Voltage (AC or DC) Heater Current. Maximum Plate Voltage. Maximum Screen Voltage. Maximum Plate Dissipation. Maximum Peak Heater-Cathode Voltage.	1.25 Amperes 450 Volts 200 Volts 10 Watts
Direct Interelectrode Capacitances* Grid to Plate Input Output	11.3 μμf.

*Without external shield.

(Cont'd) 6AU5^{GT}

TYPICAL OPERATION


HORIZONTAL DEFLECTION AMPLIFIER**

Heater Voltage (AC or DC)	6.3 Volts
Heater Current,	1.25 Amperes
Plate Voltage [†]	450 Volts
Screen Voltage	167 Volts
Peak Positive-Surge Plate Voltage	4500 Volts
Peak Positive Grid Signal (Sawtooth)	85 Volts
Peak Negative Grid Signal (Sawtooth)	15 Volts
Plate Current	71 Ma.
Screen Current	6 Ma.
Developed High Voltage	12.0 K Volts

**Circuit used for these data is that given for Type 6BQ6GT. †This voltage consists of 325 volts from DC power supply plus boost from the damper circuit.

APPLICATION

Sylvania Type 6AU5GT is a beam power amplifier designed especially for use as a horizontal scanner in television receivers using magnetic deflection. For typical circuit see deflection amplifier circuit given for Type 6BQ6GT which uses a "fly-back" type high voltage supply.

SYLVANIA RADIO TUBES

e.,

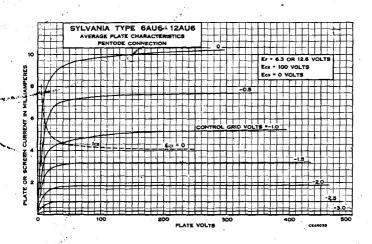
6AU6 Sylvania Type

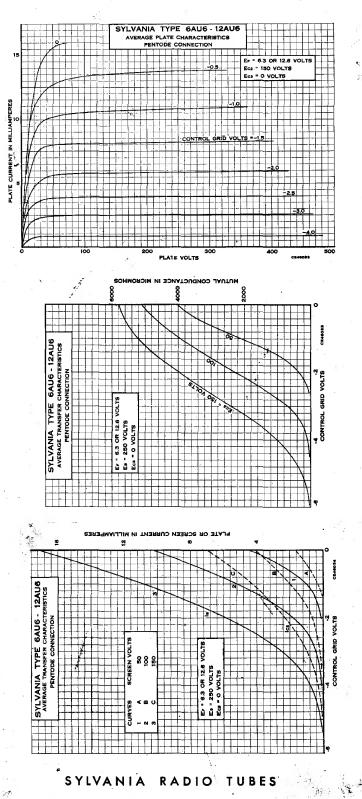
SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

	Base	7 Pin
.1	Bulb. T Maximum Overall Length 21 Maximum Seated Height 1	1/2
	Maximum Overall Length	8
		8"
	Mounting Position A	ny

RATINGS

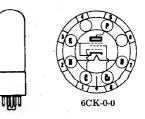

Divect Interelectrode Canaditances .*	
Maximum Screen Dissipation Minimum Control Grid Voltage Maximum Heater-Cathode Voltage	0 Volt
Maximum Screen Supply Voltage Maximum Plate Dissipation Maximum Screen Dissipation	3 Watts
Heater Current. Maximum Plate Voltage. Maximum Screen Voltage.	
Heater Voltage AC or DC	


TYPICAL OPERATION

Heater Voltage	6.3	6.8	6.3 Volts	
Healer Current	300	300	300 Ma.	
Plate Voltage	100	250	250 Volts	
Superessor Grid		Connect to	Cathode at Sock	et
Forten Woltage	100	125	150 Volts	
Control Grid Voltage	-1.0	-1.0	-1.0 Volt	
Athode Resistow	150	100	68 Ohms	
Plate Resistance (Approximate)	0.5	1 5	1.0 Megohm	
Mutual Conductance	3900	4500	5200 µmhos	
"Control Grid Voltage at 10 µa. Plate	-4.2	-5.5	-6.5 Volts	2
Control Grid Voltage at 10 µa. Plate Plate Current	5.0	7.6	10.6 Ma.	
Screen Current.	2.1	3.0	4.3 Ma.	

APPLICATION

Sylvania Type 6AU6 is a sharp cut-off pentode of miniature construction. It has high mutual conductance and low intersectorde capacitances. These characteristics combined with high plate resistance make it suitable for many RF and IF applications. The miniature type of construction lends itself readily to applications in compact light-weight equipment.



(Cont'd) 6AU6

6AV5^{GT} Sylvania Type

BEAM POWER AMPLIFIER TELEVISION SCANNER

PHYSICAL SPECIFICATIONS

Base	
Bulb	T-9
Maximum Overall Length	35/16"
Maximum Seated Height	2¾″
Mounting Position	Any

RATINGS

Heater Voltage (AC or DC) Heater Current. Maximum Plate Supply Voltage. Maximum Screen Voltage. Maximum Peak Positive-Surge Plate Voltage*. Maximum Negative Control Grid Voltage. Maximum Peak Negative-Surge Control Grid Voltage*. Maximum DC Plate Current. Maximum Screen Dissipation	1.2 Amperes 550 Volts 200 Volts 5500 Volts 100 Volts 400 Volts 100 Ma.
Maximum DC Plate Current. Maximum Screen Dissipation. Maximum Plate Dissipation. Maximum Control Grid Circuit Resistance # Maximum Peak Heater-Cathode Voltage	2.5 Watts 11 Watts 1 Megohm

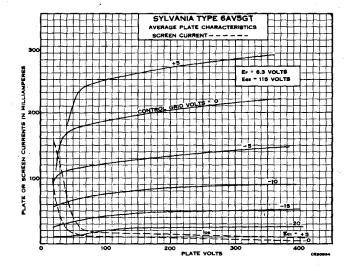
*Absolute maximum value which must not be exceeded under any condition of operation. The duration of the voltage pulse should not exceed 15% of one horizontal scanning cycle. In a 525 line, interlaced two to one, 30 frame per second television system, 15% of one vertical scanning cycle is 10 microseconds.

#As a protection against loss of excitation and resulting loss of developed bias a cathode resistor or other suitable device must be employed.

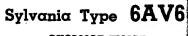
TYPICAL OPERATION** HORIZONTAL DEFLECTION AMPLIFIER

Heater Voltage (AC or DC)	6.3 Volts
Heater Current	
Plate Voltaget	460 Volts
Screen Voltage	136 Volts
Peak Positive-Surge Plate Voltage	4400 Volts
Peak Positive Grid Signal (Sawtooth)	65 Volts
Peak Negative Grid Signal (Sawtooth)	35 Volts
Plate Current	
Screen Current	
Developed High Voltage	12.0 K Volts

**Circuit used for these data is that given for Type 6BQ6GT.


†This voltage consists of 325 volts from DC power supply plus boost from the damper circuit.

APPLICATION


Sylvania Type 6AV5GT is a beam power amplifier designed especially for use as a horizontal scanner tube in television receivers using magnetic deflection. The typical operating conditions shown above may be obtained by using the circuit given for Type 6BQ6GT. This provides sufficient scan for use with a Sylvania Type 16TP4 picture tube.

(Cont'd) 6AV5^{GT}

ġ.

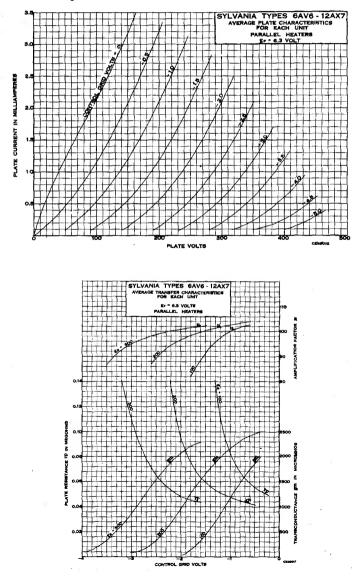
DUODIODE TRIODE

7BT-0-0

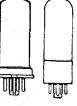
PHYSICAL SPECIFICATIONS

BaseS	mall Button Miniature 7 Pin
Bulb	T-514
Maximum Overall Length. Maximum Seated Height. Mounting Position.	
Maximum Seated Height	
	Any
RATINGS	

Heater Voltage AC or DC	6.3 Volts
Heater Current	
Maximum Plate Voltage (Triode Unit)	200 Walta
Maximum Peak Heater-Cathode Voltage	90 Volta
Maximum Diode Plate Current per diode	1.0 Ma.


6AV6 (Cont'd)

TYPICAL OPERATION TRIODE UNIT - CLASS A, AMPLIFIER


Heater Voltage	6.3	6.3 Volts
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Grid Voltage	-1	-2 Volts
Amplification Factor	100	100
Plate Resistance		62,500 Ohms
Transconductance		1600 µmhos
Plate Current	0.5	1.2 Ma.

APPLICATION

Sylvania Type 6AV6 is a high mu diode triode in the miniature style. It is very similar in characteristics to lock-in Type 7B4 and the resistance coupled data given in appendix will be substantially correct for this type also. Type 12AV6 is the 150 Ma. equivalent for use in AC-DC sets.

Sylvania Type 6AX5^{GT}

FULL-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

BaseIntermed	
Bulb Maximum Overall Length Maximum Seated Height Mounting Position	35/6" 23/4"
RATINGS	
Heater Voltage AC or DC Heater Current. Maximum Peak Inverse Plate Voltage. Maximum Peak Heater-Cathode Voltage. Maximum Peak Plate Current (per plate)	6.3 Volts 1.2 Amperes 1250 Volts 450 Volts 375 Ma.
TYPICAL OPERATION	•
CONDENSER INPUT TO FILTER	
AC Voltage per Plate (RMS) 350 Plate Supply Impedance per Plate 50 Filter Input Capacitor 10 DC Output Voltage at Input to Filter (approx.) 10 At Half-Load Current of 62.5 Ma. 395 At Full-Load Current of 125 Ma. 350 80 Ma. 305	450 Volts 105 Ohms 10 μf. Volts 540 Volts Volts 490 Volts
CHOKE INPUT TO FILTER	
AC Voltage per Plate (RMS)	450 Volts 10 Henries
At Half-Load Current of 75 Ma	Volts 365 Volts Volts 350 Volts
	000 10100

APPLICATION

Sylvania Type 6AX5GT is a full-wave rectifier featuring the unipotential cathode. It is designed for use in ac operated receivers and automobile receivers.

Sylvania Type **6AX6**^G

FULL WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

BaseMedium Bulb	ST-14
Maximum Overall Length Maximum Seated Height	4 16"
Mounting Position	Any
RATINGS	
Heater Voltage AC or DC Maximum Peak Inverse Voltage (per plate)	6.3 Volts
Rectifier Operation Damper Operation*	1250 Volts 2000 Volts
Maximum Heater-Cathode Voltage	
Heater Negative With Respect to Cathode	450 Volts 100 Volts
Maximum Peak Plate Current per Plate	600 Ma.
Maximum DC Output Current per Plate	In the 525
line, 30 frame television system 15% of one scanning cycle is 10 microsec	onds.

6AX6^G (Cont'd)

TYPICAL OPERATION FULL WAVE RECTIFIER — CONDENSER INPUT

Heater Voltage AC or DC	6 3 Volte
Heater Current	
AC Plate Voltage per Plate (RMS)	350 Volts
DC Output Current.	
Total Effective Plate Supply Impedance per Plate (Min.)	145 Ohms
DC Output Voltage at Input to Filter (approx.)	
At 1/2 Load (125 Ma.)	
At Full Load (250 Ma.)	350 Volts

APPLICATION

Sylvania Type 6AX6G is a full wave rectifier featuring the coated unipotential cathode. It is suitable for damper-diode service in television deflection circuits or as a rectifier in conventional power supply applications.

6B4G Sylvania Type

POWER AMPLIFIER TRIODE

PHYSICAL SPECIFICATIONS

Base	
Bulb	 ST16
Maximum Overall Length	 . 5 ⁵ 16*
Maximum Seated Height	 4 34 "
Mounting Position	 Any
RATINGS	
Intinos	
Filament Voltage	 6.3 Volts
Filament Current.	 1.0 Ampere
Maximum Plate Voltage	 325 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate	 16 μμf.
Input	7 uuf.
Output	 5 μµf.

TYPICAL OPERATION AS AMPLIFIER

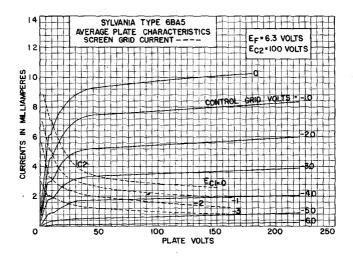
	Class A	Push Pull Class AB Two Tube	
	One Tube	Fixed Bias	Self Bias
Filament Voltage	. 6.3	6.3	6.3 Volts
Filament Current	., 1.0	1.0	1.0 Ampere
Plate Voltage	. 250	325	325 Volts
Grid Voltage*	45	~68	Volts
Self-Bias Resistor	. 750		850 Ohms
Plate Current (Per Tube)	60	40	40 Ma.
Plate Resistance	. 800		Ohms
Mutual Conductance	. 5250		µmhos
Amplification Factor	. 4.2		
Total Load Resistance	2500	3000	5000 Ohms
Power Output	3.2	15	10 Watts
Harmonic Distortion	5.0	2.5	5.0 Per Cent
*Measured from filament center ta		ated on AC.	

APPLICATION

Sylvania 6B4G is a power amplifier triode, identical to Type 6A3 in electrical characteristics, and is used in the output stage of a-c operated receivers and public address systems.

Any of the conventional methods may be used for the input coupling provided that the resistance added in the grid return is not excessive. The d-c resistance in this circuit should be less than 0.5 megohm for a self-bias arrangement; with fixed bias the limit is 50,000 ohms. If the above values are exceeded, the bias voltage may be reduced as a result of grid current. This condition will cause excessive plate current to flow which, in turn, may cause damage to the tube or output transformer.

Sylvania Type 6BA5


PENTODE VOLTAGE AMPLIFIER

8DY-0-0

PHYSICAL SPECIFICATIONS

Base Bulb Maximum Overall Bulb Length Minimum Lead Length Mounting Position.	
RATINGS	
Heater Voltage AC or DC. Maximum Plate Voltage Maximum Screen Voltage Maximum Plate Dissipation Maximum Screen Dissipation Maximum Héater-Cathode Voltage Maximum Grid Circuit Resistance (cathode bias)	6.3 Volts 150 Volts 140 Volts 0.7 Watt 0.3 Watt 90 Volts 1 Megohm
Direct Interelectrode Capacitances:	Unshielded Shielded*
Grid to Plate. Input Output *External shield of 0.405" diameter connected to catl	. 0.1 .065 μμf. . 3.2 3.4 μμf. . 1.6 3.6 μμf. node.
TYPICAL OPERATIO CLASS A1 AMPLIFIER	N
Heater Voltage Heater Current Plate Voltage Screen Voltage Cathode Bias Resistor Plate Current Screen Current Mutual Conductance Plate Resistance · Control Grid Bias Voltage for Ib = 10 μa. For use in resistance coupled circuits, see data in app	
ATE RESISTANCE IN MEGOHMS	614
2.0 1.2 1.2	9 0 4
SERENTS IN MILLIAMERES	าว
4 <u>0</u> 0 8 0 4	~ ~ ~
L CONDUCTANCE IN MICROMHOS	AUTUM
2800 2400 2000 1600 1200	8
AVERAGE TRANSFER CHARACTERISTICS Ep=6.3 VOLTS Eb.Ec2=100 VOLTS fb	-8 -6 -4 -2 CONTROL GRID VOLTS

6BA5 (Cont'd)

6BA6 Sylvania Type REMOTE CUT-OFF RF PENTODE

7BK-0-2

PHYSICAL SPECIFICATIONS

Base	Miniature Button 7 Pin
Bulb	T-5½
Maximum Overall Length	$ \begin{array}{ccccccccccccccccccccccccccccccccc$
Maximum Seated Height	1 ⁷ / ₈ "
Mounting Position	Ány

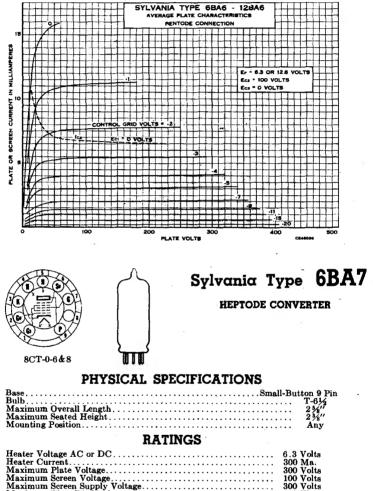
RATINGS

Heater Voltage AC or DC. Heater Current. Maximum Plate Voltage. Maximum Screen Supply Voltage. Maximum Screen Supply Voltage. Maximum Screen Dissipation. Maximum Screen Dissipation. Minimum Control Grid Voltage.	0.6 Watt
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate Input	

Output. $5.0 \ \mu\mu f.$ *Without external shield.

TYPICAL OPERATION

Heater Voltage	6.3	6.3 Volts
Heater Current	0.30	0.30 Ampere
Plate Voltage	100	250 Volts
Suppressor Grid	Connected	to Cathode at Socket
Screen Voltage		100 Volts
Self-Bias Resistor	68	68 Ohms
Plate Resistance (Approximate)	0.25	1.0 Megohms
Mutual Conductance		4400 µmhos
Grid Voltage at $Gm = 40 \ \mu mhos$	-20	-20 Volts
Plate Current		11 Ma.
Screen Current	4.4	4.2 Ma.


SYLVANIA RADIO TÜBES

.

(Cont'd) 6BA6

APPLICATION

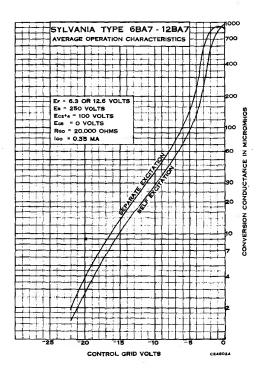
Sylvania Type 6BA6 is a remote cut-off pentode of miniature construction. The remote cut-off characteristics allow smooth control of gain by changing grid bias voltage thus assuring satisfactory performance in a-v-c controlled circuits. Its small size and high mutual conductance together with low interelectrode capacitances make this tube suitable for compact, light weight equipment.

Maximum Plate Dissipation Maximum Streen Dissipation Maximum Streen Dissipation Maximum Signal Grid Voltage Negative Bias Positive Bias Maximum Heater-Cathode Voltage	2.0 Watts 1.5 Watts 22 Ma. 100 Volts 0 Volts
Direct Interelectrode Capacitances: (Without Shield) Grid G to Plate. Grid G to Go.	0.19 μμf. Max.
Grid Go to Plate RF Input. Occillator Input.	0.05 μμf. Max. 9.5 μμf. 6.7 μμf.
Mixer Output Grid Go to all Except Cathode Grid Go to Cathode. Cathode to all Except Grid Go	3.4 μμf. 3.3 μμf.

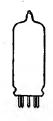
6BA7 (Cont'd)

TYPICAL OPERATION CONVERTER (Separate Excitation*)

	•	
Heater Voltage	6.3	6.3 Volts
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Suppressor and Internal Shield**	Connected	directly to ground
Screen Voltage	100	100 Volts
Control Grid Voltage	-1	-1 Volts
Oscillator Grid (Go) Resistor	20,000	- 20,000 Ohms
Plate Resistance (Approx.)	0.5	1.0 Megohm
Conversion Transconductance	900	950 µmhos
Conversion Transconductance (Approx.) at		
Signal Grid Volts=-20.	3.5	$3.5 \mu mhos$
Plate Current		3.8 Ma.
Screen Current	10.0	10.0 Ma.
Oscillator Grid Current	0.35	0.35 Ma.
Total Cathode Current	14.2	14.2 Ma.


Note: The transconductance between grid Go and screen connected to plate (not oscillating) is approximately 8000 μ mhos under the following conditions: signal applied to grid G at zero bias; screen and plate at 100 volts; grid G grounded. Under the same conditions, the plate current is 32.0 Ma, and the amplification factor is 16.5.

*The characteristics shown with separate excitation correspond very closely with those obtained in a self-excited oscillator circuit operating with zero bias.

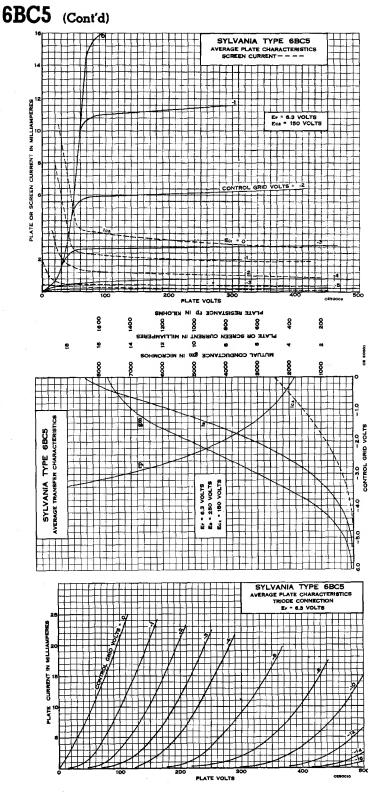

**Internal shield (pins 6 and 8) connected directly to ground.

APPLICATION

Sylvania Type 6BA7 is a high gain heptode converter of the miniature style, designed for use in FM broadcast service. A separate connection is provided for direct grounding of the suppressor. The short internal leads which are a feature of miniature construction, make the Type 6BA7 applicable for oscillator-mixer service in the 88-108 mc band. The Type 6BA7 has characteristics similar to those of the metal Type 6SB7-Y.

Sylvania Type 6BC5

SHARP CUTOFF RF PENTODE


PHYSICAL SPECIFICATIONS

Base	Minis	ature Button 7-Pin
Bulb		
Maximum Overall Length		2.1/1
Maximum Seated Height		
Mounting Position		Any
RATINGS		
Heater Voltage (AC or DC)		6 3 Volte
Menter voltage (AC of DC)		200 Volta
Maximum Plate Voltage		
Maximum Screen Supply Voltage		300 Volts
Maximum Plate Dissipation		2.0 Watts
Maximum Screen Dissipation		0.5 Watts
Maximum Heater Cathode Voltage		90 Volts
Direct Interelectrode Capacitances:		
Pentode Connection	Shielded*	Unshielded
Grid to Plate	0.020	0.030 µµf. Max.
Input		6.5 µµf.
Output		1.8 µµf.
Triode Connection**	0.1	1.0 µµ1.
	95	9 5f
Grid to Plate		$2.5 \mu\mu f.$
Grid to Plate Input.	4.0	3.9 µµf.
Grid to Plate Input.	4.0	3.9 µµf.
Grid to Plate	4.0	3.9 µµf.
Grid to Plate Input.	4.0	3.9 µµf.


Heater Voltage	6.3	6.3	6.3 Volts
Heater Current	300	300	300 Ma.
Plate Voltage	100	125	250 Volts
Screen Voltage	100	125	250 Volts
Cathode Resistor	180	100	180 Ohms
Mutual Conductance	4900	6100	5700 μ mhos
Plate Current	4.7	8.0	7.5 Ma.
Screen Current	1.4	2.4	2.1 Ma.
Plate Resistance (approx.)	0.6	0.5	0.8 Megohm
Control Grid Voltage (approx.) for Ib = 10 μ a.	-5	6	-8 Volts
Heater Voltage Heater Current Plate Voltage Grid Voltage		6.3 300 250 2.6	6.3 Volts 300 Ma. 180 Volts 4.9 Volts
Heater Current Plate Voltage Grid Voltage		300	300 Ma.
Heater Current. Plate Voltage Grid Voltage Cathode Resistor	· · · · · · · · · · · · · · · · · · ·	300 250 2.6 820	300 Ma. 180 Volts 4.9 Volts 330 Ohms
Heater Current. Plate Voltage Grid Voltage Cathode Resistor Mutual Conductance.	· · · · · · · · · · · · · · · · · · ·	$300 \\ 250 \\ 2.6$	300 Ma. 180 Volts 4.9 Volts
Heater Current. Plate Voltage Grid Voltage Cathode Resistor	· · · · · · · · · · · · · · · · · · ·	300 250 2.6 820 4400	300 Ma. 180 Volts 4.9 Volts 330 Ohms 6000 µmhos

APPLICATION

Sylvania Type 6BC5 is a high mutual conductance sharp cut-off RF pentode of miniature construction. It may be used up to 400 megacycles and is particularly useful in television receivers where a slightly higher gain than that obtained with the similar Type 6AG5 is desired. The two cathode leads may be used to provide separate RF returns in circuits requiring this feature.

TRIPLE DIODE

PHYSICAL SPECIFICATIONS

Base	
Bulb	T-6½
Maximum Overall Length	23/16
Maximum Seated Height	115/16"
Mounting Position.	Any

RATINGS

Heater Voltage AC or DC. Heater Current Maximum Diode Operation Current per Plate. Maximum Peak Heater-Cathode Voltage.	450 Ma. 12 Ma.
Direct Interelectrode Capacitances: (Unshielded)	
Plate of Diode #1 to All Other Elements Plate of Diode #2 to All Other Elements Plate of Diode #3 to All Other Elements	5.5 µµf.

Sylvania Type 6BD5^{GT}

TELEVISION DEFLECTION AMPLIFIER

6CK-0-0

PHYSICAL SPECIFICATIONS

UGIU

Base	. Intermediate Octal 6-Pin
Bulb	T -9
Maximum Overall Length	
Maximum Seated Height	· · · · · · · · · · · · · _ 3 ⁵ /16"
Mounting Position	Vertical†
[†] Horizontal operation permitted if pins 2 and 7 are in	n a vertical plane.

RATINGS

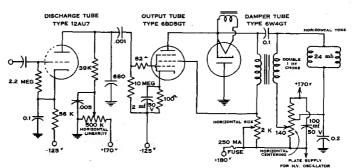
Heater Voltage (AC or DC)	6.3 Volts
Maximum Plate Voltage	325 Volts
Maximum Screen Voltage	
Maximum Plate Dissipation	10 Watts
Maximum Cathode Current	
Maximum Peak Positive Surge Plate Voltage*	4000 Volts
Maximum Peak Negative Surge Control Grid Voltage	200 Volts
Maximum Screen Dissipation	3.0 Watts
Maximum Control Grid Circuit Resistance	1.0 Megohm
Maximum Peak Cathode Current	300 Ma.
Maximum Heater to Cathode Voltage	135 Volts
	1 1507 .6

*The duration of the voltage pulse must not exceed 10 microseconds or $15\,\%$ of the pulse recurrence period, whichever is smaller.

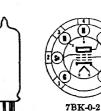
TYPICAL OPERATION DEFLECTION AMPLIFIER

Heater Voltage	6.3 Volts
Heater Current	0.9 Ampere
Plate and Screen Grid Supply Voltage	310 Volts
Peak Positive Surge Plate Voltage (approx.)	2500 Volts
Peak Control Grid Surge Voltage (approx.)	50 Volts
Cathode Current.	
Mutual Conductance**	

**The mutual conductance is 5000 $\mu mhos$ when measured with 200 volts on plate and screen, and -12 volts on the control grid.


6BD5^{GT} (Cont'd)

APPLICATION


Sylvania Type 6BD5GT is a beam pentode tube adapted for use as a deflection amplifier tube in television sets. A typical use as a denection ampliture tube in television sets. A typical circuit is shown below. The use of this tube and circuit provides full horizontal scanning for a 50° 12 inch picture tube with 11,000 volts anode supply. The stem and basing arrangement permit the use of this tube under the peak voltage condition found in this type of service.

For curve data, reference should be made to type 6L6G, to which type 6BD5GT is similiar up to its wattage ratings.

HORIZONTAL DEFLECTION AMPLIFIER

6BD6 Sylvania Type

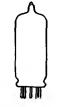
REMOTE CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base Bulb Maximum Overall Length Maximum Seated Height Mounting Position		$\begin{array}{c} T-5\frac{1}{2}\\ 2\frac{1}{8}^{\prime\prime}\\ 1\frac{7}{8}^{\prime\prime}\end{array}$
RATINGS		
natings		
Heater Voltage AC or DC		6.3 Volts
Heater Current		. 300 Ma.
Maximum Plate Voltage		. 300 Volts
Maximum Screen Voltage		. 125 Volts
Maximum Plate Dissipation		4.0 Watts
Maximum Screen Dissipation		0.4 Watts
Maximum Cathode Current		
Maximum Heater-Cathode Voltage	• • • • • • • • • • • • • • • • • • • •	. 90 Volts
Direct Interelectrode Capacitances:	Shielded II	nehielded

	Shielded	Unshielded
Grid to Plate Input Output	4.3	0.004 μμf. Max. 4.3 μμf. 5.0 μμf.

(Cont'd)


TYPICAL OPERATION

eater Voltage
eater Current
late Voltage
creen Voltage
ontrol Grid Voltage
late Current
creen Current
late Resistance 0
ransconductance
rid Voltage (approx.) for 10 µmhos

6.3 Volts	
300 Ma.	
250 Volts	
100 Volts	
–3 Volts	
9 Ma.	
3.5 Ma.	
0.7 Megohn	1
2000 µmhos	
-35 Volts	

6BD6

Sylvania Type 6BE6

HEPTODE CONVERTER

PHYSICAL SPECIFICATIONS

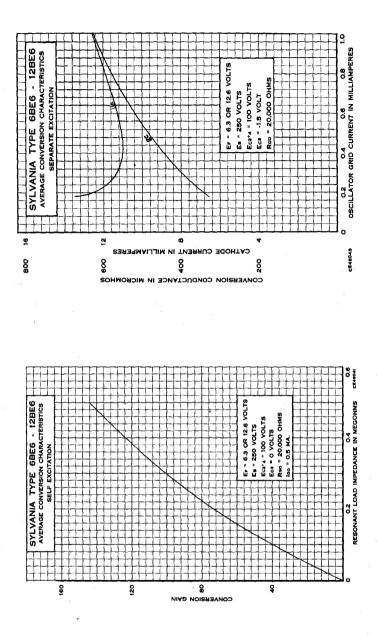
Base	Miniature Button 7 Pin
Bulb.	$ T5\frac{1}{2}$
Maximum Overall Length	····· 2 %8 1 %
Mounting Position	

RATINGS

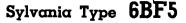
Heater Voltage AC or DC	6.3 Volts
Heater Current	300 Ma.
Maximum Plate Voltage	300 Volts
Maximum Screen Voltage	100 Volts
Maximum Screen Supply	300 Volts
Maximum Plate Dissipation	1.0 Watt
Maximum Screen Dissipation	1.0 Watt
Maximum Cathode Current	14.0 Ma.
Minimum Control Grid Voltage	0 Volt
Maximum Heater-Cathode Voltage.	90 Volts
-	
Direct Interelectrode Capacitances :*	
Direct Interelectrode Capacitances:* Grid 3 to Plate	0.30 μμf. Max.
Grid 3 to Plate	0.30 μμf. Max. 7.0 μμf.
Grid 3 to Plate Mixer Input	
Grid 3 to Plate	7.0 μμf. 8.0 μμf.
Grid 3 to Plate Mixer Input Mixer Output. Oscillator Input.	7.0 μμ ί. 8.0 μμ ί. 5.5 μμ ί.
Grid 3 to Plate. Mixer Input Mixer Output Oscillator Input. Grid 1 to Grid 3.	7.0 μμ ί. 8.0 μμ ί. 5.5 μμ ί. 0.15 μμ ί. Max.
Grid 3 to Plate. Mixer Input Oscillator Input. Grid 1 to Grid 3. Grid 1 to Plate.	7.0 μμf. 8.0 μμf. 5.5 μμf. 0.15 μμf. Max. 0.05 μμf. Max.
Grid 3 to Plate. Mixer Input Mixer Output Oscillator Input. Grid 1 to Grid 3.	7.0 μμ ί. 8.0 μμ ί. 5.5 μμ ί. 0.15 μμ ί. Max.

TYPICAL OPERATION

(SEPARATE EXCITATION)*


Heater Voltage	6.3	6.3 Volts
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Screen Voltage	100	100 Volts
Control Grid Voltage	-1.5	–1.5 Volts
Plate Current		2.6 Ma.
Screen Current		7.5 Ma.
Oscillator Grid Current		0.5 Ma.
Total Cathode Current		10.6 Ma.
Oscillator Grid Resistor		20000 Ohms
Plate Resistance (Approximate)		1.0 Megohms
Conversion Transconductance		$475 \mu mhos$
Conversion Transconductance, Eg3==-30 Volts	10 App.	10 App. μmhos

*Data for self excitation in a zero bias circuit corresponds very closely to that for separate excitation.


APPLICATION

Sylvania Type 6BE6 is a miniature style heptode converter. It is similar in application to Type 6SA7GT and lock-in Type 7Q7. Operation data as given are for separate excitation but corresponds very closely to that obtained with self excitation. The small size of this tube lends itself readily to the design of light-weight compact equipment.

6BE6 (Cont'd)

BEAM POWER AMPLIFIER

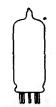
PHYSICAL SPECIFICATIONS

Base	Button 7-Pin
Bulb	T-5½
Maximum Overall Length	2 ⁵ /8" 2 ³ /8"
Maximum Seated Height	23%"
Mounting Position	Any

RATINGS

VERTICAL DEFLECTION AMPLIFIER OPERATION

	0.0.77.14
Heater Voltage AC or DC	6.3 Volts
Maximum Plate Voltage	250 Volts
Maximum Screen Voltage	250 Volts
Maximum Plate Dissipation	
Maximum Screen Dissipation	
Maximum Heater-Cathode Voltage	100 Volts
Maximum Plate Peak to Peak Pulse Component	+700 Volts
Maximum Control Grid Resistor	
Minimum Cathode Bias Resistor	
Maximum Plate Duty Cycle	
	Repetition Rate


Direct Interelectrode Capacitances: Unshielded

	Pentode	Triode Connected
Grid #1 to Plate Input Output	. 14	7.5 μμf. 7 μμf. 6 μμf.

TYPICAL OPERATION

VERTICAL DEFLECTION AMPLIFIER (TRIODE CONNECTION) VERTICAL DEPLECTION AMPLIFIER (TRIODE CONNECTION) Heater Voltage 6.3 Volts Heater Current 1.2 Amperes Plate Voltage 225 Volts Screen (Tie to Plate) 225 Volts Cathode Bias Resistor 1200 Ohms Control Grid Input Potential Peak to Peak Sawtooth (approx.) 40 Volts Negative Control Grid Peaking Component (approx.) 56 Volts DC Plate Current 20 Ma. Plate Peak to Peak Sawtooth Component. 140 Volts Sweep Height for 16" Tube with 53° Deflection Angle 11½ Inches Mutual Conductance 4200 µmhos Amplification Factor. 6.7

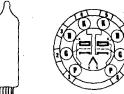
Sylvania Type 6BF6

DUODIODE TRIODE

<u> </u>	

PHYSICAL SPECIFICATIONS		
BaseMiniature B Bulb. Maximum Overall Length. Maximum Seated Height. Mounting Position.	T-51/2 21/8" 17/8"	
RATINGS—Triode Unit		
Heater Voltage AC or DC Heater Current Maximum Plate Voltage Maximum Plate Dissipation Maximum Peak Heater-Cathode Voltage	300 Ma. 300 Volts 2.5 Watt	
Direct Interelectrode Capacitances:-Triode Unit Shielded	Unshielded	
Grid to Plate	2.0 μμf. 1.8 μμf. 1.1 μμf.	

6BF6 (Cont'd)


TYPICAL OPERATION TRIODE UNIT - CLASS A, AMPLIFIER

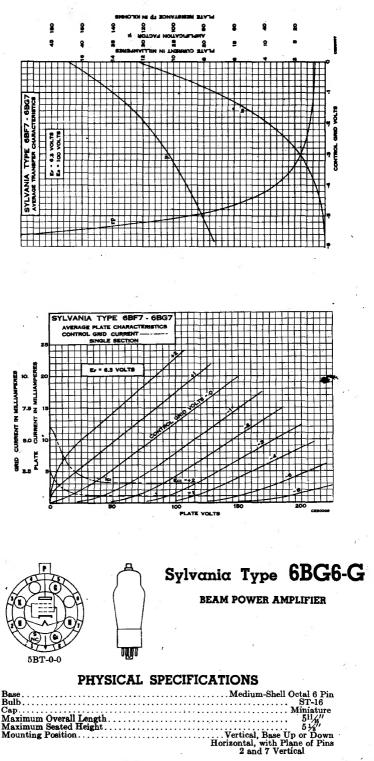
	-	
	Heater Voltage	6.3 Volts
,	Heater Current	300 Ma.
	Plate Voltage	250 Volts
	Grid Voltage	-9 Volts
	Amplification Factor	16
	Plate Resistance	8500 Ohms
	Transconductance	$1900 \ \mu mhos$
	Plate Current	9.5 Ma.
	Load Resistance	10,000 Ohms
	Total Harmonic Distortion	
	Power Output.	
	Data for use in Resistance Coupled Amplifiers may be obtained	by referring to

Data for use in Resistance Coupled Amplifiers may be obtained by referring to type 7E6 in the appendix.

6BF7 Sylvania Type

DUOTRIODE

8DG-0-0


PHYSICAL SPECIFICATIONS

BaseFlexible Leads BulbT-3			
Maximum Bulb Overall Length Minimum Lead Length. Mounting Position		11/2"	
RATINGS			
Heater Voltage AC or DC Maximum Plate Voltage Maximum Plate Dissipation (each section) Maximum Heater-Cathode Voltage		110 Volts 1.0 Watt	
Direct Interelectrode Capacitances:			
	Unshielded	Shielded	
Grid to Plate (each section) Input (each section) Output (section #1) (section #2) Grid to Grid Plate to Plate *External shield 0.405" diameter connected to cathod	2.0 0.28 0.30 0.009 0.75	1.5 μμf. 2.0 μμf. 1.6 μμf. 2.0 μμf. 0.008 μμf. 0.55 μμf.	
TYPICAL OPERATION			
Heater Voltage AC or DC Heater Current. Plate Voltage. Cathode Bias Resistor Plate Current. Amplification Factor. Mutual Conductance.		6.3 Volts 300 Ma. 100 Volts 100 Ohms 8.0 Ma. 35 800 µmhos	
Plate Resistance Control Grid Voltage for Ib = 10ua		,000 Ohms -7 5 Volta	

For use in resistance coupled circuits, see data in appendix.

1

(Cont'd) 6BF7

6BG6-G (Cont'd)

RATINGS

Heater Voltage AC or DC	6.3 Volts
Heater Current	0.9 Ampere
Maximum Plate Voltage	700 Volts
Maximum Peak Positive Surge Plate Voltage*	6000 Volts
Maximum Screen Voltage**	350 Volts
Maximum Negative Control Grid Voltage	50 Volts
Maximum Peak Negative Surge Control Grid Voltage*	400 Volts
Maximum DC Plate Current	100 Ma.
Maximum Screen Input	3:2 Watts
Maximum Plate Dissipation	20 Watts
Maximum Heater-Cathode Voltage	135 Volts
Maximum Control Grid Circuit Resistance	1.0 Megohm
*The duty analysis of the voltage pulse must not around 150% of one	acomping avala

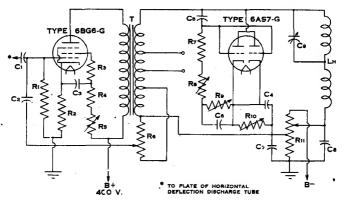
*The duty cycle of the voltage pulse must not exceed 15% of one scanning cycle and its duration must be limited to 10 microseconds.

**Preferably obtained from plate voltage supply through a series dropping resistor of sufficient magnitude to limit the screen grid input to the rated maximum value for wide variation in screen current.

Direct Interelectrode Capacitances:*

Grid to Plate	.65 µµf. Max.
Input	12.0 µµf.
Output	6.5 μμf.

*With no external shield.


TYPICAL OPERATION DEFLECTION AMPLIFIER

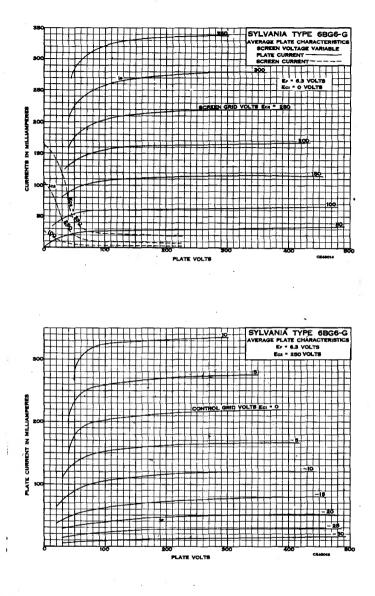
DC Supply Voltage, Plate and Screen Peak Positive Surge Plate Voltage (Approx.)	400 Volts
Peak Negative Surge Control Grid Voltage	-100 Volts
Plate Current	
Control Grid Current	25 да
Transconductance (approx.)	$6000 \ \mu mhos$

APPLICATION

Sylvania Type 6BG6-G is a beam power amplifier designed for use as the driver tube in the horizontal deflection amplifier of television circuits using electro-magnetic deflection. A possible circuit is shown on the following page.

HORIZONTAL DEFLECTION CIRCUIT

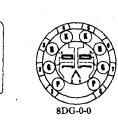
Cl: 0.01 µf, 400 DC working volts C2: 150 µµf, 400 DC working volts C3 C4: 4 µf, 450 DC working volts


(electrolytic) (c5: 30 $\mu\mu$ f, IEOO-volt surge (c6: 0.02 μ f, 400 DC working volts (c7: 0.02 μ f, 400 DC working volts (c9: 3elancing Capacitor, 25 to 75 $\mu\mu$ f, 800-volt surge LH: Horizontal Deflecting Yoke, Telectron Type Ho. DY-15, Telectron Type Ho. D

or equivalent R1: 500,000 ohms, f/2 wait R2: 100 ohms, 2 waits R3: 100 ohms, 2 waits R4: 8000 ohms, 4 waits

,

R5: Width Control. 50,000 ohms. 5 watta Feaking Amplitude and Line-R6: arity Control, 5000 ohms, wire wound, 2 watts 87: 50,000 ohms. I watt R8: Linearity Control, 25,000 ohms, 1 watt Linearity Control, 100,000 R9: ohms, 1 watt R 10: earity Control, 1000 chms, 5 watts Centering Control, 20 ohms, tapped at 10 ohms Horizontal Deflection Trans-Ť: former, Telectron Type No. YT-111H, or equivalent

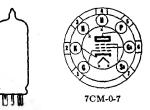


SYLVANIA RADIO TUBES

,

6BG7 Sylvania Type

DUOTRIODE


PHYSICAL SPECIFICATIONS

BaseSubminiature Button	
	Г-3
Maximum Overall Length	1/2"
	1⁄2″
Mounting Position	Any
For other data refer to corresponding Type 6BE7 which is identical exc	ept for

lead length.

6BH6 Sylvania Type

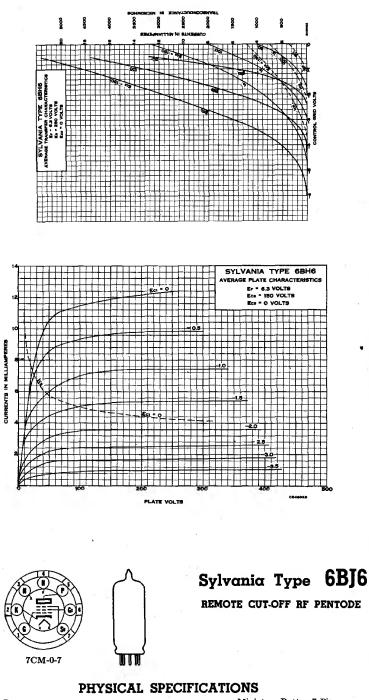
SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base.	516	
RATINGS		
Heater Voltage AC or DC	Volts	

meater voltage AU or DU	
Heater Current	
Maximum Plate Voltage	
Maximum Screen Voltage	
Maximum Screen Supply Voltage	
Maximum Control Grid Voltage	
Negative bias value	
Positive bias value	5
Maximum Plate Dissipation	
Maximum Screen Dissipation	
Maximum Heater-Cathode Voltage	
Direct Interelectrode Capacitances:*	
Direct Interelectrode Capacitances.*	
Grid to Plate	κ.
Input	
Output $4.4 \mu\mu f.$	

*With no external shield.


TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Voltage	6.3	6.3 Volts
Heater Current	150	150 Ma.
Plate Voltage	100	250 Volts
Suppressor		
Screen Voltage		150 Volts
Control Grid Voltage		-1 Volt
Plate Current	3.6	7.4 Ma.
Screen Current	1.4	2.9 Ma.
Control Grid Bias (approx.) for	-5	-7.7 Volts
10 µa Plate Current		
Plate Resistance	0.7	1.4 Megohms
Transconductance	3400	4600 μ mhos

APPLICATION

Sylvania Type 6BH6 is a sharp cut-off RF pentode of miniature construction. It has a 150 Ma. heater which makes it useful in AC/DC receivers, and in mobile equipment requiring low heater drain.

(Cont'd) 6BH6

 Base
 Miniature Button 7 Pin

 Bulb
 T-514

 Maximum Overall Length
 21%"

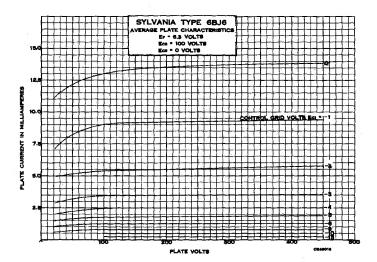
 Maximum Seated Height
 1%"

 Mounting Position
 Any

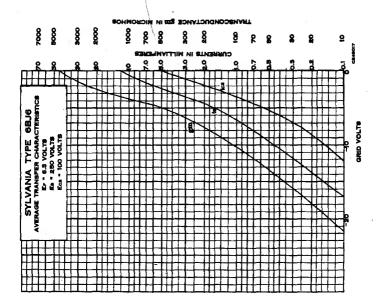
6BJ6 (Cont'd)

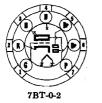
RATINGS

Heater Voltage AC or DC	6.3 Volts
Heater Current	150 Ma.
Maximum Plate Voltage	300 Volts
Maximum Screen Voltage	125 Volts
Maximum Screen Supply Voltage	300 Volta
Maximum Plate Dissipation	3.0 Watts
Maximum Screen Dissipation	0.6 Watts
Maximum Control Grid Voltage	
Negative bias	50 Volts
Positive bias	0 Volts
Maximum Peak Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate 0.003	5 uuf. Max.
	5 μµf.
	Dµµf.
*Without external shield.	


TYPICAL OPERATION

CLASS \mathbf{A}_1 AMPLIFIER


Heater Voltage	6.3	6.3 Volts
Heater Current	150	150 Ma.
Plate Voltage.		250 Volts
Screen Voltage		100 Volts
Control Grid Voltage		
Suppressor	Connected	to cathode at socket
Control Grid Bias (Approx.)		
for 15 µmhos Transconductance		-20 Volts
Plate Current.		9.2 Ma.
Screen Current		3.3 Ma.
Transconductance		$3800 \ \mu mhos$
Plate Resistance (Approx.)	Q.25	1.3 Megohms


APPLICATION

Sylvania Type 6BJ6 is a remote cut-off pentode of miniature construction designed for use in sets requiring 150 Ma. heater current. It is similar in application to Sylvania Type 6BA6.

(Cont'd) 6BJ6

Sylvania Type 6BK6

DUO-DIODE HIGH-MU TRIODE

PHYSICAL SPECIFICATIONS

Base	 Miniature Button 7 Pin
Bulb	 T514
Maximum Uverall Length	
Maximum Seated Height	
Mounting Position	 Any

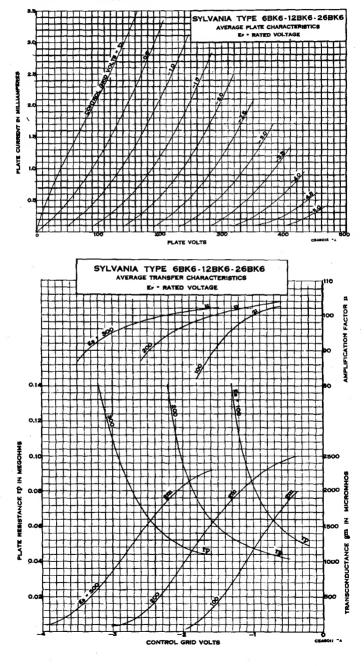
RATINGS

Heater Voltage (AC or DC)	6.3 Volts
Heater Current	300 Ma.
Maximum Plate Volts	300 Volts
Average Diode Current per Diode at 10 Volts DC	4.0 Ma.
Maximum Heater Cathode Voltage	
Maximum Diode Current for Continuous Operation	1.0 Ma.
Maximum Positive Grid Voltage	0 Volts

Direct Interelectrode Capacitances:

	Suicidea	Unsnielded
Either Diode Plate to Cathode	. 1.0	1.0 µµf.
Diode Plate No. 1 to Grid.	. 01	.013 uuf.
*With a 3/4" diameter shield (RMA Std. No. 316) con	nected to ca	thode.

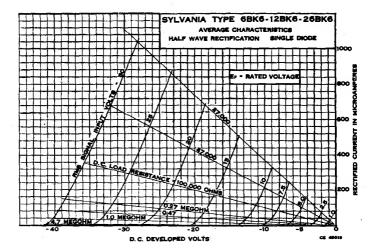
TYPICAL OPERATION


Heater Voltage (AC or DC)	6.3 6.3 Volts
Heater Current	300 300 Ma.
Plate Voltage	100 250 Volts
Grid Voltage	
Amplification Factor	100 100
Plate Resistance	80,000 62,500 Ohms
Mutual Conductance	
Plate Current	0.5 1.2 Ma.

6BK6 (Cont'd)

APPLICATION

Sylvania Type 6BK6 is a miniature duo-triode high-mu triode having characteristics very similar to type 6AV6, except for the improved diode characteristics. The improved diode perveance gives better rectification efficiency at low signals and the improved diode shielding reduces undesirable audio coupling between diode and triode. Data for use in Resistance Coupled Amplifier Circuits may be found in the appendix


be found in the appendix.

SYLVANIA RADIO TUBES

(Cont'd) 6BK6

Ì

8BD-0-0

Sylvania Type 6BL7^{GT}

DUOTRIODE

PHYSICAL SPECIFICATIONS

UUUU

Base	Short Intermediate Shell 8 Pin Octal
Bulb	Т-9
Maximum Overall Length	
Maximum Seated Height	
Mounting Position	

RATINGS

	0 0 77 14
Heater Voltage (AC or DC)	6.3 Volts
Heater Current	1.5 Amperes
Maximum Plate Supply Voltage	
Maximum Plate Voltage	
Maximum Peak Plate Voltage*	2000 Volts
Maximum Peak Negative Grid Voltage	-500 Volts
Maximum Cathode Current per Section	60 Ma.
Maximum Plate Dissipation per Section**	10 Watta
Maximum Plate Dissipation per Section**	10 Watts
Maximum Peak Heater-Cathode Voltage	± 200 Volts
Maximum Grid Circuit Resistance	4.7 Megohms
Maximum Ond Oncure Resistance	

*The duration of the voltage pulse should not exceed 15% of one vertical scanning cycle. In a 525 line, interlaced two to one, 30 frame per second television system, 15% of one vertical scanning cycle is 2.5 milliseconds.

******Total dissipation for both sections is limited to 12 watts.

Direct Interelectrode Capacitances:

	Shielded #	Unshielded
Section 1—Grid to Plate	4.2	4.2 µµf.
Input	5.0	4.4 μμf.
Output		1.1 μμf .
Section 2-Grid to Plate		4.0 μµf.
Input		4.8 μμf.
Output		$1.2 \ \mu\mu f.$
Coupling—Grid to Grid	0.1	1.11 μμf.
Plate to Plate	1.2	1.5 μµf.
WYTY 1 AT (# 1') 11 11 11 (D3C) C) 1 #00	A) annunated	to oothodo of

With a 1%'' diameter tube shield (RMA Std. #308) connected to cathode of section under test.

6BL7^{GT} (Cont'd)

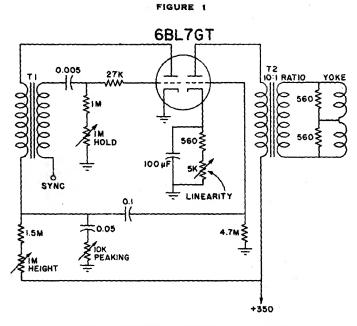
TYPICAL OPERATION CLASS A1 AMPLIFIER—SINGLE SECTION

Heater Voltage	1.5 Amperes
Plate Voltage	
Grid Voltage	
Plate Current	40 Ma.
Amplification Factor	15
Mutual Conductance	7000 µmhos
Plate Resistance	
Grid Voltage for Ib = 25 µa (approx.)	-25 Volts
Grid Voltage for Ib = 50 μ a at Eb = 600 Volts (approx.)	-60 Volts

AS A VERTICAL DEFLECTION AMPLIFIER SINGLE SECTION SCANNING A TYPE 16TP4 AT 14 KV.

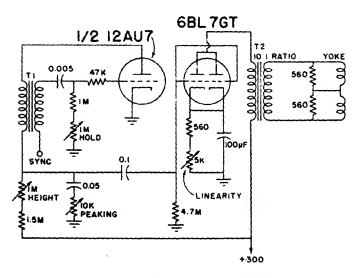
Plate Supply Voltage Peak Positive Plate Voltage	
Plate Voltage (Pulse Component)	
Plate Voltage, Peak to Peak (Sawtooth)	
Cathode Bias Resistor	2800 Ohms
Signal Voltage (Negative Peaking Component)	20 Volts
Signal Voltage, Peak to Peak (Sawtooth)	
Average Plate Current	
Plate Current, Peak to Peak	40 Ma.
Plate Input.	
Plate Dissipation	
Retrace Time	

PARALLELED SECTIONS FOR HIGH EFFICIENCY WITH A TYPE 16TP4 AT 14 KV.


Plate Supply Voltage	300 Volts
Peak Positive Plate Voltage	1020 Volts
Plate Voltage (Pulse Component)	540 Volts
Plate Voltage, Peak to Peak (Sawtooth)	
Cathode Bias Resistor	
Signal Voltage (Negative Peaking Component)	
Signal Voltage, Peak to Peak (Sawtooth)	
Average Plate Current.	
Plate Current, Peak to Peak	
Plate Input	
Plate Dissipation	
Retrace Time	220 µseconds

APPLICATION

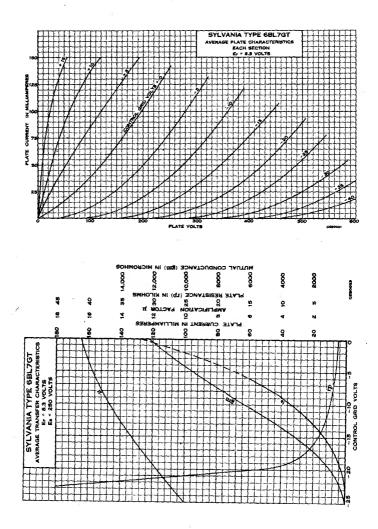
Sylvania Type 6BL7GT is a high mutual conductance duotriode designed for use as a vertical deflection amplifier in television receivers. The high current available at low voltage provides the power necessary to deflect wide angle picture tubes, such as Sylvania Type 16TP4, when operated at their maximum (14 Kv.) second anode voltage. For certain applications where the plate supply voltage must be kept low and the highest efficiency obtained, the parallel connection of the two sections may be used. A separate triode will then be required for the sawtooth generator.

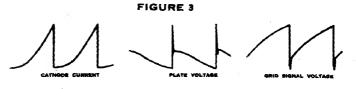

Circuit diagrams illustrating each use are shown on a following page together with the recommended components. Wave forms obtained at different points in the circuit are shown in Fig. 3 as obtained in the circuit of Fig. 1.

shown in Fig. 3 as obtained in the circuit of Fig. 1. The operating efficiency of the Sylvania Type 6BL7GT is greater at low plate supply voltages for the reason that the power required for scanning is constant and the lowest plate supply voltage necessary to provide this power is, therefore, the condition of lowest power loss.

TYPICAL VERTICAL DEFLECTION CIRCUIT USING A SINGLE SECTION OF TYPE (BL7GT IN THE OUTPUT CIRCUIT. THE SECOND SECTION IS USED FOR THE SAWTOOTH GENERATOR.

FIGURE 2




TYPICAL VERTICAL DEFLECTION CIRCUIT USING BOTH SECTIONS OF TYPE (BL7GT IN PARALLEL IN THE OUTPUT CIRCUIT.

6BL7^{GT} (Cont'd)

The data given for higher voltages, however, are useful in showing the reserve power available for conservative design, for picture tubes requiring greater deflection power, and for flexibility in the choice of supply voltage. The use of the boost voltage from the horizontal scanning given it may permit the work of a lawyer guard with the in the

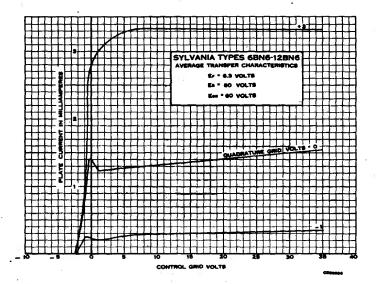
The use of the boost voltage from the horizontal scanning circuit may permit the use of a lower supply voltage in the receiver.

Sylvania Type 6BN6

GATED BEAM DISCRIMINATOR

PHYSICAL SPECIFICATIONS

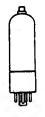
Base	$\begin{array}{cccc} & T-5\frac{1}{2} \\ & 2\frac{5}{8}'' \\ & 2\frac{3}{8}'' \end{array}$	
	1111,5	
RATINGS		
Heater Voltage Maximum Plate Voltage Maximum Screen Voltage Maximum Total Cathode Current Maximum Peak Positive Grid Voltage	6.3 Volts 135 Volts 100 Volts 10 Ma. 45 Volts	
TYPICAL OPERATION		
Heater Voltage Heater Current	6.3 Volts 300 Ma. 80 Volts 60 Volts	
Cathode Bias Resistor*	00–400 Ohms 0.23 Ma. 5.0 Ma. 68000 Ohms	


*Bias Voltage -1.3 approx. Fixed bias operation not recommended.

APPLICATION

Sylvania Type 6BN6 is a gated beam tube in miniature construction designed especially for use in FM limiter-discriminator circuits. It may also be used as a sync separator and square wave generator. Type 6BN6 represents a considerable departure from the construction and characteristics of a conventional pentode. Due to the use of a sharply focused electron beam, the first control grid has a step shaped control characteristic, the plate current rising abruptly from zero to a sharply defined maximum as the grid voltage changes from negative to positive. The second control grid has similar properties. If made strongly negative it cuts the plate current off, or over à range of potentials in the vicinity of zero it controls the height of the plate current maximum, but if made more positive it loses all control of the plate current, which cannot exceed a certain level.

In the limiter discriminator application the first control grid is biased near the midpoint of its characteristic and passes current during the positive half cycle of signal, the peak amplitude of the current being limited to a definite value. After passing through the second accelerator the pulsed current produces a current in the second control grid by space charge coupling. If an LC circuit tuned to the signal frequency is connected to the second control grid, a voltage at signal frequency is produced which lags the signal voltage on grid 1, by about 90 degrees. The voltage on the second control grid, or quadrature grid, then controls the width of the plate current pulses to the plate, so that the average plate current is proportional to the frequency deviation of the signal, and the audio signal may be recovered from a load resistor in the plate circuit.


6BN6 (Cont'd)

Sylvania Type 6**BQ6**GT

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

BaseIntermediate	
Bulb	. Т-9
Cap	. Miniature
Maximum Overall Length	. 31⁄8″
Maximum Seated Height	35/6"
Maximum Overall Length Maximum Seated Height Mounting Position	Any

RATINGS

Heater Voltage (AC or DC)	6.3 Volts 550 Volts
Maximum Peak Positive Surge Plate Voltage	5,000 Volts
Maximum Screen Voltage	200 Volts
Maximum Negative Control Grid Voltage	50 Volts
Maximum Peak Negative Surge Control Grid Voltage	100 Volts
Maximum DC Plate Current	1Q0 Ma.
Maximum Screen Dissipation	2.5 Watts
Maximum Plate Dissipation	10 Watts
Maximum Control Grid Circuit Resistance	0.5 Megohms
Maximum Peak Heater-Cathode Voltage	180 Volts
Ratings are based on use in typical television service in which	the duty cycle

of the voltage pulse must not exceed 15% on one scanning cycle or 10 microseconds whichever is smaller.

Direct Interelectrode Capacitances†

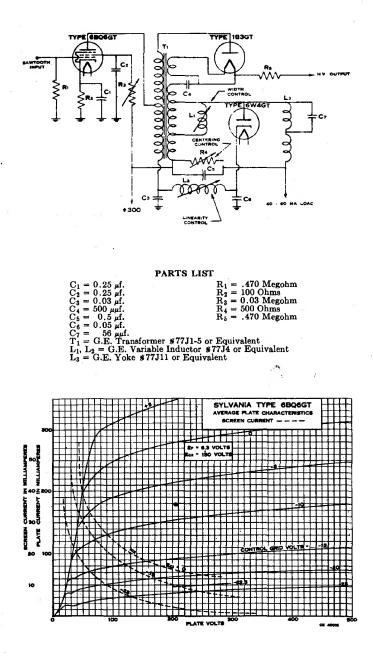
Grid to Plate	0.95 μμf.
Input	14 μµf.
Output	9.5 μμf.
tWith no external shield.	••

AVERAGE CHARACTERISTICS

Heater Voltage	6.3 Volts
Heater Current	1.2 Amperes
Plate Voltage	250 Volts
Screen Voltage	150 Volts
Control Grid Voltage	-22.5 Volts
Plate Current	55 Ma.
Screen Current	2.1 Ma.
Mutual Conductance	5.500 µmhos

TYPICAL OPERATION

HORIZONTAL DEFLECTION AMPLIFIER


Plate and Screen Supply Voltage	275	300	325 Volts
Peak Positive Surge Plate Voltage	4000	4000	4,000 Volts
Peak Positive Grid Signal (Sawtooth)	50	50	50 Volts
Peak Negative Grid Signal (Sawtooth)	50	50	50 Volts
Cathode Bias Resistor	100	100	100 Ohms
Plate Current	85	85	83 Ma.
Screen Current	9	7	5 Ma.
Developed High Voltage		12.0	12.0 K Volts

APPLICATION

Sylvania Type 6BQ6GT is a beam power amplifier designed for use as a driver tube in the horizontal deflection amplifier for television circuits using electro-magnetic deflection. The plate being brought out to the top cap permits the use of high surge voltages. A typical circuit is shown on the following page.

6BQ6^{GT} (Cont'd)

TYPICAL DEFLECTION AMPLIFIER CIRCUIT WITH "FLY BACK" TYPE HIGH VOLTAGE SUPPLY

Sylvania Type 6BQ7

MEDIUM MU DUOTRIODE

9AJ-0-9

PHYSICAL SPECIFICATIONS

Base	
Bulb	T-6½
Maximum Overall Length	23 6" 115 6"
Maximum Seated Height	115/18"
Mounting Position	Any

RATINGS

Heater Voltage AC or DC	6.3 Volts
Maximum Plate Voltage	250 Volts
Maximum Plate Dissipation	
Maximum Cathode Current	20 Ma.
Maximum Peak Heater-Cathode Voltage	200 Volts
Direct Interelectrode Capacitances (Shielded):	

Section #1 Section #2 Grid to Plate. 1.15 µµf. Input. 2.55 ...µµf. Input. 4.75 µµf.

Input (Grounded Grid) Output Output (Grounded Grid)	1.30	4.75 μμf. μμf. 2.40 μμf.

TYPICAL OPERATION

CLASS A1 AMPLIFIER

Plate Voltage	150 Volts
Cathode Bias Resistor	220 Ohms
Plate Current	9 Ma.
Amplification Factor	35
Plate Resistance	
Mutual Conductance	$6,000 \ \mu mhos$

APPLICATION

Sylvania Type 6BQ7 is a miniature type medium-mu duotriode designed for use in low-noise, vhf amplifiers.

7BT-0-2

Sylvania Type 6BU6

DUO-DIODE TRIODE

PHYSICAL SPECIFICATIONS

BaseSmall	
Bulb	T-5½″
Maximum Overall Length	25%"
Maximum Seated Height	23/8"
Mounting Position	. Any

RATINGS

Heater Voltage		, 6.3 Volts
Maximum Plate Voltage		300 Volts
Maximum Positive dc Control Grid Voltage		0 Volts
Maximum Heater-Cathode Voltage		±90 Volts
Average Diode Current per Diode at 10 Volts dc		4.0 Ma.
Average Diode Current per Plate for Continuous Oper		
Direct Interelectrode Capacitances:		
	Shielded*	Unshielded
Either Diode Plate to Cathode	1.0	1.0 uuf.

6BU6 (Cont'd)

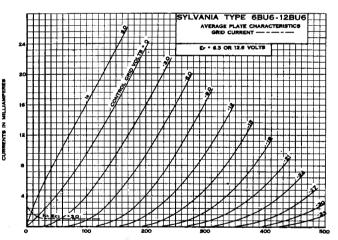
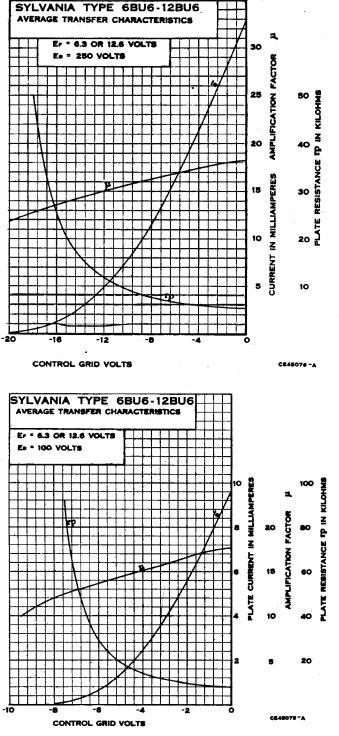
TYPICAL OPERATION CLASS A1 AMPLIFIER

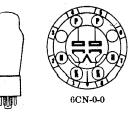
Heater Voltage (AC or DC)	6.3	6.3 Volta
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Grid Voltage	-3.0	-9.0 Volts
Self Bias Resistor	770	950 Ohms
Plate Current	3.9	9.5 Ma. 8.500 Ohms
Mutual Conductance.	1500	$1900 \ \mu mhos$
Amplineation Factor	16 5	1800 µmmos 16
Load Resistance		10.000 Ohma
Power Output		300 Mw.
Total Harmonic Distortion		6.5 %

APPLICATION

Sylvania Type 6BU6 is a miniature duo-diode triode having characteristics very similar to Type 6BF6, except for the improved diode characteristics. The improved diode perveance gives better rectification efficiency at low signals and the improved diode shielding reduces undesirable audio coupling between diode and triode.

A diode load curve may be found by referring to Type 6BK6. Design data for use in resistance coupled circuits may be found in the appendix.


PLATE VOLTS

CE49074 -

6BY5G Sylvania Type

FULL-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

Base	Medium O	ctal 7 Pin
Bulb		ST-14
Maximum Overall Length		4 5/8" 4 1/16"
Maximum Seated Height		41/16"
Mounting Position		Any

RATINGS

Heater Voltage AC or DC.	6.3 Volts	
Maximum Peak Inverse Voltage Rectifier Service	1,400 Volts	
Damper Service*	3,000 Volts	
Maximum Heater-Cathode Voltage		
Heater Negative With Respect to Cathode	450 Volts	
Heater Positive With Respect to Cathode	100 Volts	
Maximum DC Output Current	175 Ma.	
Maximum Peak Plate Current	525 Ma.	
Tube Voltage Drop (Tube Conducting 175 Ma. Each Plate)	32 Volts	
*Duration of voltage pulse not to exceed 15% of one scanning cycle. In the 52 line, 30 frame television system 15% of one scanning cycle is 10 microseconds.		

TYPICAL OPERATION


FULL WAVE RECIFIER, CONDENSER-INPUT FIL	164
Heater Voltage	6.3 Volts
Heater Current	1.6 Amperes
AC Plate Supply Voltage (each plate) RMS	
Filter Input Capacitance	8 μf.
Effective Plate Supply Impedance per Plate	100 Ohms
DC Output Voltage	380 Volts
DC Output Current	175 Ma.

APPLICATION

Sylvania Type 6BY5G is a duodiode with separate unipotential cathodes. It is suitable for damper-diode service in television deflection circuits or as a rectifier in conventional power supply applications.

6C4 Sylvania Type

HIGH FREQUENCY POWER TRIODE

PHYSICAL SPECIFICATIONS

BaseMiniature	Button 7 Pin
Maximum Overall Length	216"
Maximum Seated Height	11/8"
Mounting Position	. Any
RATINGS	÷
Heater Voltage AC or DC	6.3 Volts
Heater Current	150 Ma.
Maximum Plate Voltage	300 Volts
Maximum Plate Current.	25 Ma.
Maximum Plate Dissipation	3.5 Watts
Maximum DC Grid Current	8.0 Ma.
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate	1.4 µµf.
Input	1.8 µµf.
Output *With close fitting shield connected to cathode.	2.5 µµf.

(Cont'd) 6C4

TYPICAL OPERATION

Heater Voltage	6.3 Volts
Heater Current	150 Ma.

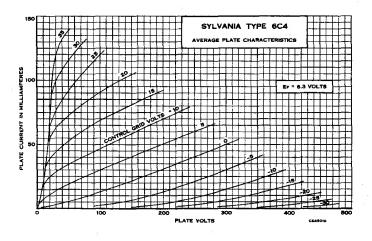
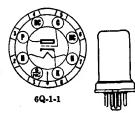

CLASS A	1 AMPLIFIER
---------	-------------

Plate Voltage	100 250 Volts	
Grid Voltage**	0 -8.5 Volts	
Self-Bias Resistor		
Amplification Factor	19.5 17	
Plate Resistance	6250 7700 Ohms	
Mutual Conductance	3100 2200 µmhos	
Plate Current		
CLASS C POWER AMPLIFIER AND	OSCILLATOR***	
Plate Voltage		
Plate Voltage Grid Voltage**		
Plate Voltage Grid Voltage** DC Plate Current		
Plate Voltage Grid Voltage**	300 Volts 27 Volts 25 Ma. 7.0 Ma.	

APPLICATION

Sylvania Type 6C4 is a miniature type high-frequency triode. It is intended for use at high frequencies as an oscillator or power amplifier. Good power output, at reasonable efficiencies, is obtainable from this tube at frequencies in the order of 150 megacycles.


For use in resistance coupled circuits, see data in appendix.

Sylvania Type $6C5^{GT}$

MEDIUM-MU TRIODE

fe Pin

PHYSICAL SPECIFICATIONS

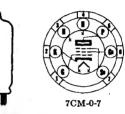
Base	6C5 Small Wafer Octal 6 Pin	6C5GT Small Wat Octal 6 F Metal Slee
Bulb. Maximum Overall Length. Maximum Seated Height. Mounting Position.	2 5/8 " 2 1/16 "	T9 3 ⁵ 4 2 ³ 4 Any

6C5^{GT} (Cont'd)

RATINGS

Heater Voltage AC or DC Heater Current. Maximum Plate Voltage. Minimum Grid Voltage. Maximum Plate Dissipation. Maximum Heater-Cathode Voltage	•••••	6.3 Volts 0.3 Ampere 250 Volts 0 Volt 2.5 Watts 90 Volts
Direct Interelectrode Capacitances:	6C5**	6C5GT*
Grid to Plate Input. Output. *With 144 dismeter shield (RMA Std. 308) con	2.0 3.0 11	2.2 μμf. 4.4 μμf. 12 μμf.
*With 154" diameter shield (RMA Std. 308) con **With metal shell connected to cathode.	nected to cathod	e.

TYPICAL OPERATION CLASS & AMPLIFIER


Heater Voltage	۰	6.3 Volts
Heater Current		0.3 Amperes
Plate Voltage		250 Volts
Grid Voltage**		-8 Volts
Plate Resistance		10000 Onms
Mutual Conductance		2000 µmhos

*The DC resistance in the grid circuit should not exceed 1.0 megohm.

For use in resistance coupled circuits see data in appendix.

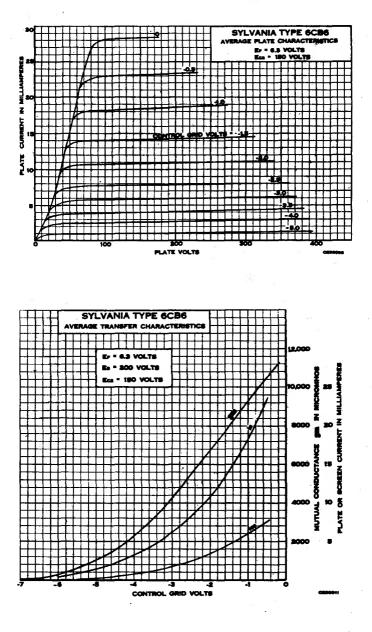
6CB6 Sylvania Type

SHARP CUTOFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base	. N	Air	niat	ure But	
Bulb					T-51/2
Maximum Overall Length	۰.				21/3"
Maximum Seated Height	• •				$2\frac{1}{8}''$ $1\frac{7}{8}''$
Mounting Position	••				Any
RATINGS					
Heater Voltage (AC or DC)				6.3	Valte
Maximum Plate Voltage	•••	•••	• • •		Volts
Maximum Flate voltage	•••	•••	• • •		Volts
Maximum Screen Voltage	• •	••	•••		
Maximum Heater-Cathode Voltage	•••	••	• • •		Watts
Maximum Plate Dissipation	۰.	••	•••		
Maximum Screen Dissipation	•••	••	•••	0.0	Watts
Direct Interelectrode Capacitances:*					
Grid to Plate				0.020	uuf. Max.
Input.				6.3	uuf.
Output	•••	•••	•••		
*With no external shield.	•••	•••	•••	2.0	papa 1 t
TI IVII ILU CAVCI ILAI DITICIUI					

TYPICAL OPERATION

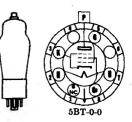

CLASS A1 AMPLIFIER

Heater Voltage	6.3 Volts
Heater Current	
Plate Voltage	200 Volts
Screen Voltage	150 Volts
Cathode Bias Resistor	180 Ohms
Plate Resistance (approx.)	0.6 Megohm
Mutual Conductance	
Plate Current	
Screen Current	2.8 Ma.
Grid Voltage (approx) for $Ib = 10 \mu approx$	-8 Volta

APPLICATION

Sylvania Type 6CB6 is a sharp cutoff pentode of the miniature construction designed for television use as an if amplifier operating in the vicinity of 40 megacycles. It may also be used as an rf amplifier in vhf television tuners. An added feature is the separate connection for the suppressor grid and internal shield.

(Cont'd) 6CB6



SYLVANIA RADIO TUBES

0

6CD6G Sylvania Type

BEAM POWER AMPLIFIER TELEVISION SCANNER

PHYSICAL SPECIFICATIONS

Base	Medium Octal 6 Pin
Bulb	ST-16
Cap	Small
Maximum Overall Length	
Maximum Seated Height	51/6//
Mounting Position	Vertical*
*Horizontal operation permitted if ning 2 and 7 are in a r	

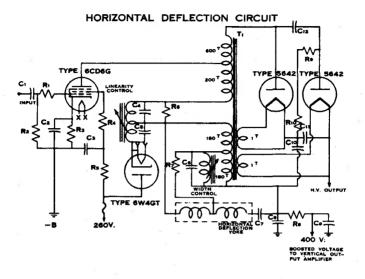
RATINGS

Heater Voltage (AC or DC)	6.3 Volts
Heater Current	2.5 Amperes
Maximum Plate Voltage	700 Volts
Maximum Peak Positive-Pulse Plate Voltage**	6000 Volts
Maximum Peak Negative-Pulse Plate Voltage**	-1500 Volts
Maximum Screen Voltage	
Maximum Negative Control Grid Voltage	50 Volts
Maximum Peak Negative Pulse Control Grid Voltage	150 Volts
Maximum DC Plate Current.	170 Ma.
Maximum Screen Dissipation	3 Watts
Maximum Plate Dissipation	15 Watts
Maximum Control Grid Circuit Resistance	1 Megohm
Maximum Peak Heater-Cathode Voltage	
**The duration of the pulse should not exceed 15.07 of one having	

**The duration of the pulse should not exceed 15% of one horizontal scanning cycle. In a 525 line, interlaced two to one, 30 frame per second television system, 15% of one horizontal scanning cycle is 10 microseconds.

Direct Interelectrode Capacitances:#

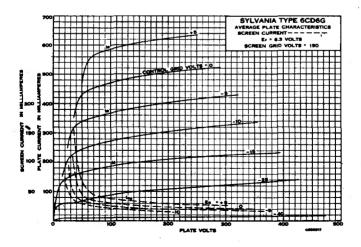
Grid to Plate	1.0 μμf. Max.
Input	2.6 µµf.
Output	10 μμf.
# With no external shield.	


TYPICAL OPERATION

HORIZONTAL DEFLECTION AMPLIFIER FOR TYPE	19AP4
Heater Voltage	6.3 Volts
Heater Current	2.5 Amperes
Plate Voltage # #	430 Volts
Screen Voltage	165 Volts
Cathode Bias Resistor	270 Ohms
Grid Signal Voltage (Peak to peak sawtooth components)	50 Volts
Grid Signal Voltage (Negative peaking component)	35 Volts
Plate Dissipation	9.6 Watts
Plate Current	112 Ma.
Screen Current	14 Ma.
Peak-Positive-Pulse Output Voltage	3400 Volts
Cathode Current (Peak to peak)	470 Ma.
High Voltage Available for Picture Tube Anode	12 Kv.
# # This voltage consists of 250 volts from the DC power supply boost from the damper circuit.	plus 180 volts

APPLICATION

Sylvania Type 6CD6G is a beam power tube designed for use in the horizontal output deflection circuits of television receivers. A typical circuit is shown on the following page for use with Sylvania Type 19AP4 and 250 volts supply.


(Cont'd) 6CD6G

PARTS LIST

 T_1 = Horizontal Output and H. V. Transformer L_1 = Deflection Yoke 14 mh

SYLVANIA RADIO TUBES

į

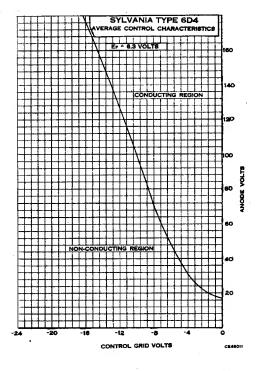
6D4 Sylvania Type

GAS TRIODE

PHYSICAL SPECIFICATIONS

BaseMinia	ture	Button 7 Pin
Base Bulb Maximum Overall Length Maximum Sacted Height	• • • •	T5 1/2
Maximum Overall Length		176
Maximum Seated Height		
RATINGS		
		6 3 Volta

	0.3 VOLUS
TIEBLEI VOIGBETTO OLISOTTITE	250 Ma.
Heater Current	
Minimum Heating Time*	30 Seconds
Minimum rieating time	450 Volts
Maximum Voluge Douroen Enterna	100 Ma.
Peak Cathole Lurrent.	
Average Cathode Current (30 seconds maximum)	25 Ma.
Average Cathole Current (30 seconds maximum)	16 Volts
Tube voltage Diop at 20 ma. (hpproximete)	100 Volta
Maximum Heater-Cathode Voltages	100 40112
Maximum Meuver Cuthole , ongetting	+25 Volts


+25 VOILS *Heater voltage must be applied before application of anode voltage so that the cathode reaches operating temperature.

TYPICAL OPERATION

Heater Voltage Heater Current Anode Voltage	$6.3 \\ 0.25 \\ 50 \\ 0.25 \\ 0.2$	6.3 Volts 250 Ma. 125 Volts
Approximate Grid Voltage to Start Conduction		-12.0 Volts

APPLICATION

Sylvania Type 6D4 is a gas triode of miniature construction. It may be used as a relay control tube or as a relaxation oscillator. The miniature construction lends itself readily to use in compact light weight equipment.

Sylvania Type 6E5

ELECTRON RAY INDICATOR TUBE

PHYSICAL SPECIFICATIONS

all 6 Pin
T9
4 %
3%
Any

RATINGS

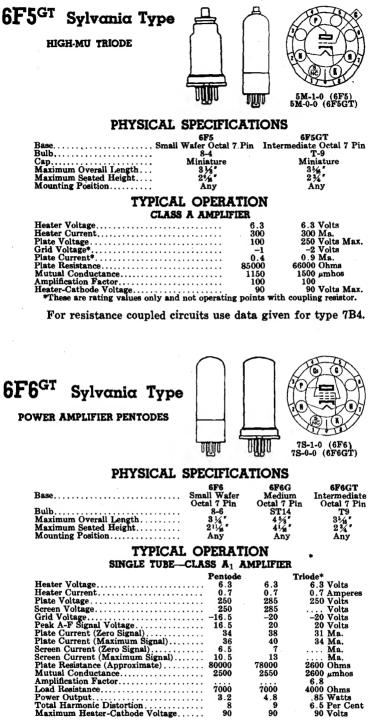
Heater Voltage AC or DC	6.3 Volts
Heater Current	0.3 Ampere
Maximum Plate Supply Voltage	250 Volts
Maximum Target Voltage	250 Volts
Minimum Target Voltage	100 Volts
Maximum Heater-Cathode Voltage	90 Volts

TYPICAL OPERATION

Heater Voltage. Plate Supply Voltage. Target Supply Voltage. Plate Current (Triode Unit)*. Target Current (Approximate)*. Grid Voltage (Triode Unit) † Approximate. Grid Voltage (Triode Unit) † Approximate.	100 100 0.19 1.0 0.0 -8.8	6.3 200 200 0.19 3.0 0.0 -6.5	6.3 Volts 250 Volts 250 Volts 0.24 Ma. 4.0 Ma. 0.0 Volt -8.0 Volts
Triode Plate Resistor *With triode grid voltage of zero volts.	0.5	1.0	1.0 Megohm
tFor shadow angle of 90 degrees			

iFor shadow angle of zero degrees.

APPLICATION


Sylvania Type 6E5 consists of a triode, which functions as a d-c amplifier, and an electron ray device. This latter consists of a portion of the heated cathode as a source of the electrons which are attracted to the target by the positive potential on it. The shaded or unlighted sector is produced by the shadow of a control electrode which is attached to the plate of the triode.

This tube is designed primarily for use as a visible tuning indicator of the electron ray type. It contains a round conical plate or "Target" which fluoresces during operation, and is viewed through the top of the bulb. The visible indication is in the form of a fluorescent lighted sector covering about threequarters of the area of the target when no voltage is applied to the control grid of the tube. When a negative voltage is applied to the control grid, the edges of the lighted portion close in over the previously unlighted or shaded 90° sector with a fan-like movement until the voltage is increased to a value such that the shaded portion is eliminated and the entire top surface of the target becomes uniformly illuminated.

If the control grid is made negative, the plate and therefore the electron ray-control electrode become more positive with respect to the cathode due to decreasing the voltage drop in the resistor which is connected externally between the target and the plate. As this control element becomes more positive its shadow on the target is reduced and the edges of the lighted portion close in as mentioned above.

In actual circuit use the varying negative voltage for controlling the shadow may be obtained from some point in the a-v-c circuit, thus giving an indication of resonance when the unlighted portion of the target is at minimum.

unlighted portion of the target is at minimum. The principal difference between Type 6E5 and Type 6U5/6G5 is in the plate current cut-off characteristics, which are -8 volts and -22 volts respectively. Where difficulty is experienced due to complete closing of the shadow of the 6E5 it is recommended that the 6U5/6G5 be used. If no difficulty exists due to closing of the shadow from only a portion of the a-v-c voltage being used, increased indications on weak signals may be obtained by using a Type 6U5/6G5 and applying the total a-v-c voltage. Type 6U5/6G5 may be used to replace the 6E5 in nearly all present applications, and in general no circuit changes will be necessary.

4.8 3.2 8 **9**0

90

(Cont'd) $6F6^{GT}$

PUSH-PULL AMPLIFIER

	Class A ₁	Class AB ₂	
	Pentode	Pentode	Triode*
Heater Voltage	6.3	6.3	6.3 Volts
Heater Current	0.7	0.7	0.7 Amperes
Plate Voltage	315	375	350 Volts
Screen Voltage	285	250	Volts
Grid Voltage	-24	-26	-38 Volts
Peak A-F Grid to Grid Voltage	48	82	123 Volts
Plate Current (Zero Signal)	62	34	48 Ma.
Plate Current (Maximum Signal)	80	82	92 Ma.
Screen Current (Zero Signal)	12	5	Ma.
Screen Current (Maximum Signal)	19.5	19.5	Ma.
Load Resistance (Plate to Plate)	10000	10000	6000 Ohms
Power Output	11	18.5	13 Watts
Total Harmonic Distortion	4	3.5	2 Per Cent
Maximum Heater-Cathode Voltage	90	90	90 Volts
*With screen grid tied to plate.			

APPLICATION

For single tube Class A amplifier service either transformer or impedance input-coupling devices are recommended. The 6F6 and 6F6G may also be resistance coupled from either the detector tube or the first audio stage if diode detection is used. If resistance coupling is employed the grid resistor must not exceed 500,000 ohms. This value can be utilized only when the output tube is operated entirely self-biased. When used with a fixed bias, or partially so, the resistor should not exceed 250,000 ohms.

Sylvania Type 6G6G

POWER AMPLIFIER PENTODE

PHYSICAL SPECIFICATIONS

Base	Q119
RATINGS Heater Voltage AC or DC	6.3 Volts
	V. TOV Ampere

Heater Current	0.150 Ampere
Maximum Plate Voltage	180 Volts
Maximum Screen Voltage	180 Volts
Maximum Plate Dissipation	2.75 Watta
Maximum Screen Dissingtion	0 75 Wett
Maximum Heater-Cathode Voltage	90 Volts

TYPICAL OPERATION

CLASS A1 AMPLIFIER

_	Triede*	P	entode
Heater Voltage	6.3	6.3	6.3 Volts
Heater Current . A	0.15	0.15	0.15 Ampere
Plate Voltage.	180	135	180 Volts
Screen Voltage		135	180 Volts
Grid Voltage	-12	-6	-9 Volts
Peak A-F Signal Voltage	12	6	9 Volts
Plate Current (Zero Signal)	11	11.5	15.0 Ma.
Screen Current (Zero Signal)		2.0	2.5 Ma.
Plate Resistance	4750	170000	175000 Ohms
Mutual Conductance	2000	2100	2800 µmhos
Amplification Factor	9.5	360	400
Load Resistance	12000	12000	10000 Ohms
Power Output		0.6	1.1 Watts
Total Harmonic Distortion	5	7.5	10 Per Cent
WWith concer and tied to minte	-		

*With screen grid tied to plate.

6H6^{GT} Sylvania Type

DUODIODES

PHYSICAL SPECIFICATIONS

Uppu

	6H6	6H6GT
BaseSmall Wafe	er Octal 7 Pin	Intermediate Octal 7 Pin
Bulb	Metal 8-5	Т9
Maximum Overall Length	1 1/4	35/4 "
Maximum Seated Height	11/16	3 ⁵ /16 *
Mounting Position	Any	Any
Direct Interelectrode Capacitances:*		
Plate No. 1 to Cathode	. 3.0	3.1 μμf.
Plate No. 2 to Cathode	3.4	4.0 µµ1.
Coupling—Plate No. 1 to Plate No. 2	0.1	0 1 μμf. Max.
*With close-fitting tube shield on Ty	pe 6H6GT or	shell of 6H6 connected to
cathode.		

TYPICAL OPERATION

 Heater Voltage
 6.3 Volts

 Heater Current
 0.30 Ampere

 AC Voltage Per Plate (RMS)
 150 Volts Max.

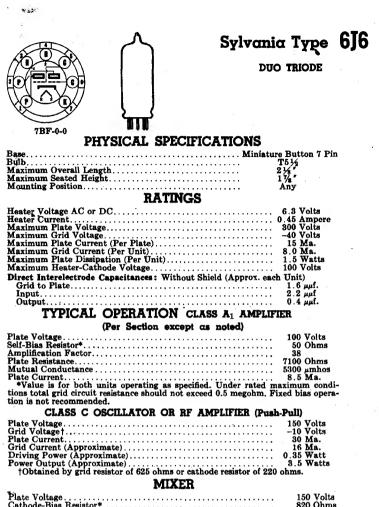
 DC Output Current
 8 Max. Max.

6J5^{GT} Sylvania Type

MEDIUM-MU TRIODES

PHYSICAL SPECIFICATIONS

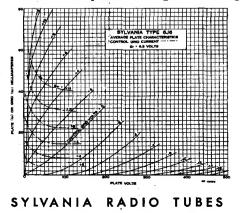
BaseSmall	6J5 Wafer Octal 6 Pin	6J5GT Small Wafer Metal
Bulb. Maximum Overall Length Maximum Seated Height	Metal 8-3 2 5% " 2 1/4 "	Sleeve Octal 6 Pin T9 3 ⁵ /4" 2 3/4"
Mounting Position	Any	Any
RAT	INGS	


Heater Voltage AC or DC		6.3 Volts
Heater Current		300 Ma-
Maximum Plate Voltage		300 Volts
Minimum Grid Voltage		0 Volt
Maximum Plate Dissipation		2.5 Watts
Maximum Heater Cathode Voltage		90 Volts.
Direct Interelectrode Capacitances:*	6J5	6J5GT
Grid to Plate	8.4	3.8 µµf.
Input	3.4	4.2 μμf.
Output	8.6	5.0 uuf.
*With standard RMA tube shield for Type 6J5GT	or shell of 6J5	connected to

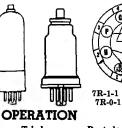
TYPICAL OPERATION CLASS & AMPLIFIER

Heater Voltage	6.3	6.3 Volts
Heater Current.	300	300 Ma.
Plate Voltage	90	250 Volts
Grid Voltage**	0	-8 Volts
Plate Current.	10.0	9.0 Ma.
Plate Resistance (Approximate)		7700 Ohms
Mutual Conductance (Approximate)	3000	2600 µmhos
Amplification Factor	20	20
**The DC Resistance in the Grid Circuit should no	t exceed 1.0	Megohm.

APPLICATION


In general the applications and operating conditions of these types will parallel those for Lock-In Type 7A4.

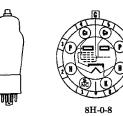
Cathode-Dias Resistor*	620 Outus		
Oscillator Peak Voltage	3 Volts		
Plate Resistance 10	0,200 Ohms		
	1900 µmhos		
Plate Current	4.8 Ma.		
*Under rated maximum conditions total grid circuit resistance should	i not exceed		
0.5 megohm. Fixed bias operation is not recommended.			


APPLICATION

Sylvania Type 6J6 is intended as a high frequency oscillator, amplifier or mixer. Power outputs in the order of 3.5 watts are obtainable as a class C amplifier at moderate frequencies. With grids in push-pull and plates in parallel this tube will operate as a mixer at frequencies as high as 600 megacycles.

6**]7**GT Sylvania Type

SHARP CUT-OFF RF PENTODES


TYPICAL OPERATION

	Тг	iode	Pe	ntode
Heater Voltage	6.3	6.3	6.3	6.3 Volts
Heater Current	0.3	0.3	0.3	0.3 Ampere
Plate Voltage	180	250	100	250 Volts
Grid Voltage*	-5.3	-8	-3	-3 Volts
Screen Voltage	Tie to	Plate	100	100 Volts
Suppressor	Tie to	Plate	Tie to	Cathode
Plate Current	5.8	6.5	2.0	2.0 Ma.
Screen Current			0.5	0.5 Ma.
Plate Resistance	0.011	0.01	1.0	>1.0 Megohms
Mutual Conductance	1800	1900	1185	1225 µmhos
Amplification Factor	20	20		
Grid Voltage for Current Cut-Off			-7	-7 Volts
and the Berrer Cartone Cart				

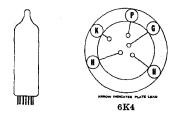
*The d-c resistance in grid circuit should not exceed 1.0 megohm.

6J8G Sylvania Type

TRIODE HEPTODE CONVERTER

PHYSICAL SPECIFICATIONS

Base	.Smal	l Octal 8 Pin		
Bulb		ST-12		
Cap		. Miniature		
Maximum Overall Length. Maximum Seated Height. Mounting Position		. 4 ¹⁵ /2"		
Maximum Seated Height		. 3 ²⁹ /2"		
Mounting Position.		. Any		
PATINCS				


RATINGS

Heater Voltage..... Heater Current..... 6.3 Volts 0.30 Ampere

The other characteristics of this tube have been substan-tially duplicated in Lock-In type 7J7 and further information may be obtained by reference to this type.

6K4 Sylvania Type

HIGH FREQUENCY TRIODE

PHYSICAL SPECIFICATIONS

Base	Flexible Leads
Bulb	T-3
Maximum Bulb Length	$1\frac{1}{2}''$ $1\frac{1}{4}''$
Minimum Lead Length	1¼″
Mounting Position	

RATINGS

Heater Voltage AC or DC	6.3 Volts
Maximum Plate Voltage	250 Volts
	90 Volts
Maximum Plate Dissipation (open air)	3.0 Watts
Maximum Cathode Current	20.0 Ma.

(Cont'd) 6K4

2.4 μμf. 2.4 μμf. 0.8 μμf.

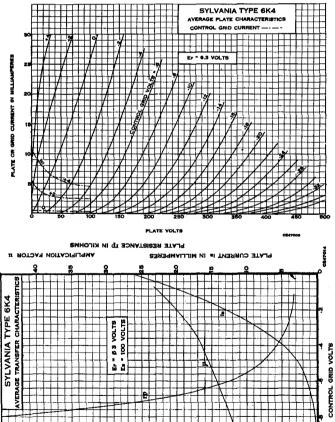
Direct Interelectrode Capacitances:

Shielded*

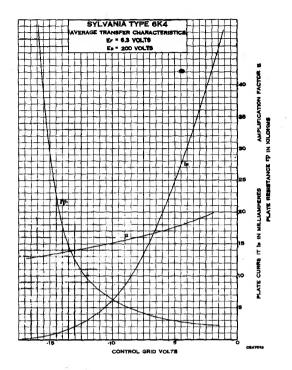
Grid to Plate.	2.4	
Input		L.
Output		3
*With a .405"	diameter shield connected to cathod	le.

TYPICAL OPERATION

Heater Voltage	6.3 6.	3 Volts
Heater Current		60 Ma.
Plate Voltage		0 Volts
Grid Voltage* Obtained from Self Bias Resistor of	150 68	0 Ohms
Plate Current		5 Ma.
Transconductance	5500 348	i0 µmhos
Amplification Factor		6
Plate Resistance		0 Ohms
Grid Voltage for Plate Current Cut-Off to 10 µa	-14 -3	0 Volts
*Provides an operating bias of approximately 2.0 and	8.0 volts resp	ectively.

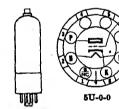

Maximum grid circuit resistance should not exceed ½ megohm. Fixed bias operation is not recommended.

APPLICATION


Sylvania Type 6K4 is designed for use in high frequency applications requiring a very small, light-weight tube, highly resistant to shock and vibration.

At frequencies of around 500 Mc., an output of approximately ¾ Watt may be obtained when used in a suitable circuit.

Data for use as a resistance coupled amplifier may be found in the appendix.



6K4 (Cont'd)

6K5^{GT} Sylvania Type

HIGH-MU TRIODE

PHYSICAL SPECIFICATIONS

Base	 Small Octal 7 Pin
Bulb	 . T9 or ST12
Cap	 . Miniature
Maximum Overall Length	 415
Maximum Seated Height	 . 415/2 " . 329/2
Mounting Position	 . Any
Direct Interelectrode Capacitances:*	
Grid to Plate	
Input	2.4 μμf.
Output	 3.6 µµf.
*No external shield.	•

TYPICAL OPERATION CLASS A AMPLIFIER

Heater Voltage	6.3	6.3 Volts
Heater Current	0.3	0.3 Ampere
Plate Voltage	. 100	250 Volts
Grid Voltage*	-1.5	-3 Volts
Plate Current*	0.35	1.1 Ma.
Plate Resistance (Approximate)		50000 Ohms
Mutual Conductance (Approximate)	900	1400 µmhos
Amplification Factor	70	70
Maximum Heater-Cathode Voltage	90	90 Volta
*These are rating values only and not operating po	ints with	

Data for use in Resistance Coupled Amplifier Circuits may be found in the appendix under Type 6Q7GT.

Sylvania Type **6K6**GT

POWER OUTPUT PENTODE

PHYSICAL SPECIFICATIONS

UUUU

Base	 Intermediate Uctal 7 Pin
Bulb	 Т9
Maximum Overall Length Maximum Seated Height	
Maximum Seated Height	 234*
Mounting Position	 Any
•	

RATINGS

Heater Voltage AC or DC	6.3 Volts
Heater Current	
Maximum Plate Voltage	315 Volts
Maximum Screen Voltage	285 Volts
Maximum Plate Dissipation	8.5 Watts
Maximum Screen Dissipation Maximum Heater-Cathode Voltage	2.8 Watts 90 Volts
	SU VATS

TYPICAL OPERATION

Heater Voltage	6.3	6.3	6.3 Volts
Heater Current	0.4	0.4	0.4 Ampere
Plate Voltage	100	250	315 Volts
Grid Voltage	-7	-18	-21 Volts
Screen Voltage	100	250	250 Volts
Plate Current (Zero Signal)	9.0	32.0	25.5 Ma.
Plate Current (Maximum Signal)	9.5	33.0	28.0 Ma.
Screen Current (Zero Signal)	1.6	5.5	4.0 Ma.
Screen Current (Maximum Signal)	3.0	10.0	9.0 Ma.
Plate Resistance1	04000	68000	75000 Ohms
Mutual Conductance	1500	2300	2100 µmhos
Peak Signal Voltage (a-f)	7	. 18	21 Volts
Load Resistance		7600	9000 Ohms
Power Output	0.35	3.4	4.5 Watts
Total Harmonic Distortion	11	11	15 Percent

APPLICATION

Sylvania 6K6GT is an efficient power amplifier pentode of the indirectly heated cathode type. This tube is the "G" type equivalent of Type 41. It has a 6.3 volt heater and is adaptable to a-c, and automobile service. Type 6K6GT may be used either singly or in push-pull com-

Type 6K6GT may be used either singly or in push-pull combination. If a single tube is employed in the output stage, using self-bias, the self-biasing resistor should be properly bypassed. For the push-pull arrangement the value of this resistor is one-half that required for a single tube.

Transformer or impedance coupling devices are to be recommended. If it is desired to use resistance coupling, the grid resistor (with self-bias) should be limited to 1.0 megohm provided the heater voltage never exceeds about 7 volts. With fixed bias the maximum allowable resistance for the grid resistor is 0.1 megohm.

The recommended load resistance should be used if possible in order to keep the second harmonic at a minimum. If, however, two tubes are used in push-pull Class A, somewhat lower third harmonic in the output may be obtained by employing a lower load for both tubes than normal since the second harmonics will cancel with the push-pull arrangement.

For curve data reference should be made to type 7B5.

6K7^{GT} Sylvania Type **REMOTE CUT-OFF RF PENTODES THE** 7**R-1-0** (6K7 UUU 7R-0-8 (6K7G 7R-1-8 (6K7GT) PHYSICAL SPECIFICATIONS 6K7 Small Wafer Octal 7 Pin Metal 8-4 6K7GT Small Wafer Metal Sleeve Octal 7 Pin T9 6K7G Base..... Small Octal 7 Pin ST12 Bulb..... Miniature 3 1/8 2% Miniature Cap..... Maximum Overall Length... Maximum Seated Height.... Mounting Position..... Miniature 415/2" 329/2" 3¼ 2¼ Any Any Any RATINGS Heater Voltage AC or DC. Heater Current. Maximum Plate Voltage. Maximum Screen Supply Voltage. Maximum Screen Voltage. Maximum Plate Dissipation. Maimum Screen Dissipation. Minimum External Grid Bias. Maximum Heater-Cathode Voltage. Niewi Luterslettede Conscitances.¹⁸ 6.3 Volts 0.3 Ampere 300 Volts 125 Volts 2.75 Watts .35 Watts 0 Volt 90 Volts Here: Interelectrode Capacitances:* .005 .007 .005 $\mu\mu$ f. Max. Input G1 to (F+K+G2+G3)....... 7 5 4.6 $\mu\mu$ f. Output P to (F+K+G2+G3)....... 12 12 μ f. *With standard RMA tube shield on Type 6K7G and 6K7GT or shell of 6K7 Direct Interelectrode Capacitances :*

connected to cathode.

TYPICAL OPERATION **CLASS A1 AMPLIFIER**

Heater Voltage	6.3	6.3	6.3 Volts
Heater Current	300	300	300 Ma.
Plate Voltage	100	250	250 Volts
Screen Voltage	100	100	125 Volts
Grid Voltage	-1.0	-3	-3 Volts
Suppressor		Tie to C	
Plate Current	9.5	7.0	10.5 Ma.
Screen Current	2.7	1.7	2.6 Ma.
Plate Resistance (Approx.)	.15	0.8	0.6 Megohm
Mutual Conductance	1650	1450	$1650 \ \mu mhos$
Grid Bias for Mutual Conductance=			
2 µmhos	-38.5	-42.5	-52.5 Volts

6K8^{gt} Sylvania Type

TRIODE HEXODE CONVERTERS

ſ		
- T	T	ĺ

K-0-8 (6K8G) K-1-8 (6K8GT)

PHYSICAL SPECIFICATIONS

Base Bulb Cap Maximum Overall Length Maximum Seated Height Mounting Position	Octal 8 Pin Metal 8-2 Miniature 31/5" 21/4"	6K8G Small Octal 8 Pin ST12 Miniature 4 ¹³ ,2 3 ²⁹ ,2 Any	T9
---	---	--	-----------

(Cont'd) 6K8 GT

RATINGS

Heater Voltage		6.3 Volts
Heater Current		0.3 Ampere
Maximum Hexode Plate Voltage		300 Volts
Maximum Hexode Screen Supply Voltage		300 Volts
Maximum Hexode Screen Voltage		150 Volts
Maximum Hexode Plate Dissipation		.75 Watt
Maximum Hexode Screen Dissipation		.7 Watt
Maximum Oscillator Anode Voltage		125 Volts
Maximum Oscillator Anode Dissipation		0.75 Watt
Maximum Total Cathode Current		16 Ma.
Minimum External Signal Grid Bias Voltage		0 Volt
Maximum Heater-Cathode Voltage		90 Volts
Direct Interelectrode Capacitances:*		
Direct Interelectrode Capacitances:*	6K8	6K8G. 6K8GT
·	6K8 0.03	6K8G, 6K8GT 0.08 µuf. Max.
Grid G to Hexode Plate (P)		0.08 μμf. Max.
Grid G to Hexode Plate (P) Grid G to Oscillator Plate	0.03	
Grid G to Hexode Plate (P) Grid G to Oscillator Plate Grid G to Oscillator Grid (Go)	0.03 0.02	0.08 μμf. Max. 0.05 μμf. Max.
Grid G to Hexode Plate (P) Grid G to Oscillator Plate Grid G to Oscillator Grid (Go) Oscillator Grid (Go) to Oscillator Plate Oscillator Grid (Go) to Mixer Plate	0.03 0.02 0.2	0.08 μμf. Max. 0.05 μμf. Max. 0.2 μμf. Max.
Grid G to Hexode Plate (P) Grid G to Oscillator Plate Grid G to Oscillator Grid (Go) Oscillator Grid (Go) to Oscillator Plate	0.03 0.02 0.2 1.1	0.08 μμf. Max. 0.05 μμf. Max. 0.2 μμf. Max. 1.8 μμf.
Grid G to Hexode Plate (P) Grid G to Oscillator Plate Grid G to Oscillator Grid (Go) Oscillator Grid (Go) to Oscillator Plate Oscillator Grid (Go) to Mixer Plate Signal Input (G to all other Electrodes) Oscillator Input (G to all other Electrodes	0.03 0.02 0.2 1.1 0.1 6.6	0.08 μμf. Max. 0.05 μμf. Max. 0.2 μμf. Max. 1.8 μμf. 0.15 μμf. Max. 4.6 μμf.
Grid G to Hexode Plate (P) Grid G to Oscillator Plate Grid G to Oscillator Grid (Go) Oscillator Grid (Go) to Oscillator Plate Oscillator Grid (Go) to Mixer Plate Signal Input (G to all other Electrodes) Oscillator Input (Go to all other Electrodes except Oscillator Plate)	0.03 0.02 0.2 1.1 0.1	0.08 μμf. Max. 0.05 μμf. Max. 0.2 μμf. Max. 1.8 μμf. 0.15 μμf. Max.
Grid G to Hexode Plate (P) Grid G to Oscillator Plate Grid G to Oscillator Grid (Go) Oscillator Grid (Go) to Oscillator Plate Oscillator Grid (Go) to Mixer Plate Signal Input (G to all other Electrodes) Oscillator Input (G to all other Electrodes	0.03 0.02 0.2 1.1 0.1 6.6	0.08 μμf. Max. 0.05 μμf. Max. 0.2 μμf. Max. 1.8 μμf. 0.15 μμf. Max. 4.6 μμf.

 $\begin{array}{cccc} 3.2 & 3.4 \ \mu\mu f. \\ Mixer Output (P to all other Electrodes) & 3.5 & 4.8 \ \mu\mu f. \\ *With standard RMA tube shield on Type 6K8G, GT or shell of 6K8 connected to cathode. \\ \end{array}$

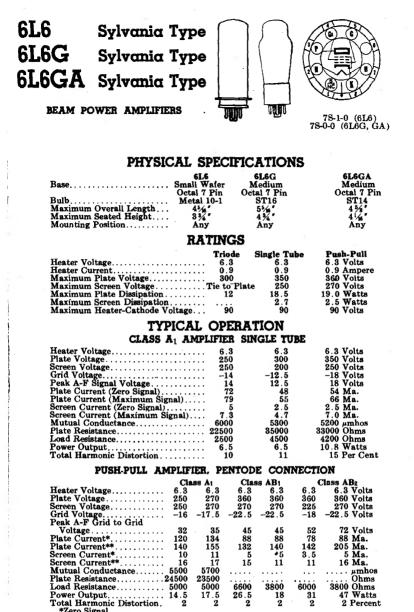
TYPICAL OPERATION AS & CONVERTER

Heater Voltage Heater Current	6.3 0.30	6.3 Volts 0.30 Ampere
Hexode Plate Voltage	100 100	250 Volts 100 Volts
Hexode Control-Grid Voltage.	-3	-3 Volts
Oscillator Anode Voltage	100	100 Volts
Oscillator Grid Resistor	50000	50000 Ohms
Hexode Plate Current	2.3	2.5 Ma.
Hexode Screen Current	6.2	6.0 Ma.
Oscillator Plate Current.	3.8	3.8 Ma.
Oscillator Grid and Hexode No. 1 Grid Current	0.15	0.15 Ma.
Cathode Current	12.5	12.5 Ma.
Hexode Plate Resistance (Approximate)	0.4	0.6 Megohm
Conversion Conductance	325	350 µmhos
Hexode Control-Grid Voltage at -6 Volts	125	140 µmhos
Hexode Control-Grid Voltage at -10 Volts Hexode Contol-Grid Voltage at -30 Volts	43	45 µmhos
(Approximate)	2	2 µmhos

6L5G Sylvania Type

MEDIUM-MU TRIODES

D---



PHYSICAL SPECIFICATIONS

Base		
Bulb		ST12
Maximum Overall Length		4 1/8 39/16
Maximum Seated Height.		262 -
Maximum Scaled Height	••••••	0.216
Mounting Position		Any
Direct Interelectrode Capacitances:*		
Grid to Plate		2.8 µµf.
Input		2.8 µµf.
Output	• • • • • • • • • • • •	
Output *With standard RMA tube shield.	• • • • • • • • • • • •	5.0 μμf.
* with standard RMA tube shield.		
TYPICAL OPERAT	ION	•
Heater Voltage	6.3	6.3 Volts
Heater Current	150	150 Ma.
Heater Current		150 Ma. 250 Volta Max
Plate Voltage	100	250 Volts Max.
Plate Voltage Grid Voltage	100	250 Volts Max. -9 Volts
Plate Voltage Grid Voltage Plate Current	100 -3 4.0	250 Volts Max. -9 Volts 8.0 Ma.
Plate Voltage Grid Voltage Plate Current. Plate Resistance	100 -3 4.0 10000	250 Volts Max. -9 Volts
Plate Voltage Grid Voltage Plate Current. Plate Resistance	100 -3 4.0 10000	250 Volts Max. -9 Volts 8.0 Ma. 9000 Ohms
Plate Voltage. Grid Voltage. Plate Current. Plate Resistance. Mutual Conductance.	100 -3 4.0 10000 1500	250 Volts Max. -9 Volts 8.0 Ma. 9000 Ohms 1900 μmhos
Plate Voltage Grid Voltage Plate Current. Plate Resistance	100 -3 4.0 10000	250 Volts Max. -9 Volts 8.0 Ma. 9000 Ohms

For use in resistance coupled circuits, see data in appendix.

otal Harmonic Distortion. 2 2 2 *Zero Signal. **Maximum Signal.

TRIODE OPERATION CLASS A1 AMPLIFIER Single Tube

Heater Voltage	6.3	6.3 Volts
Plate Voltage	300	250 Volts
Screen Voltage	Tie to l	Plate
Grid Voltage	-27	-20 Volts
Peak A-F Signal Voltage	27	20 Volts
Plate Current (Zero Signal)	41	40 Ma.
Plate Current (Maximum Signal)	48	44 Ma.
Plate Resistance	1700	1700 Ohms
Mutual Conductance	4700	$4700 \ \mu mhos$
Amplification Factor	8	8
Load Resistance	5000	5000 Ohms
Power Output	2.4	1.4 Watts
Total Harmonic Distortion	5.6	5.0 Per Cent

APPLICATION

Sylvania Types 6L6 and 6L6G are power amplifier tubes designed for use in the output stage of radio receivers, particularly in those designed to have a reserve of power capability.

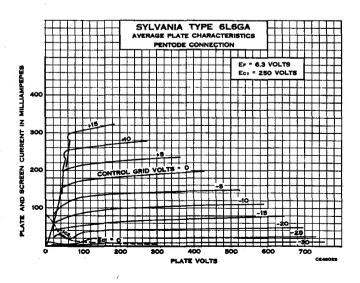
SYLVANIA RADIO TUBES

6L6 6L6G (Cont.) 6L6GA

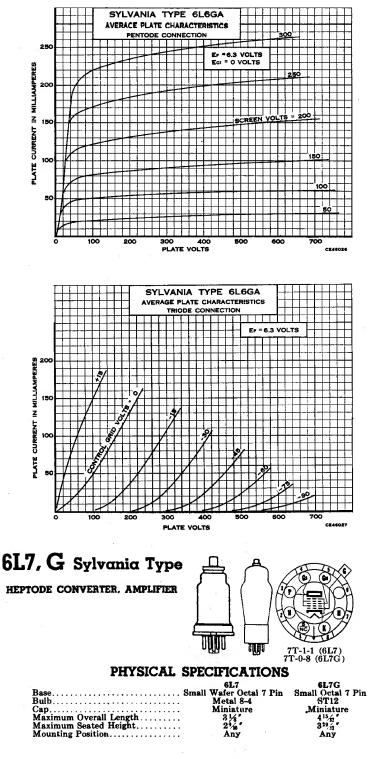
The tubes provide high power output, power sensitivity and efficiency.

The design principles, responsible for the above features, involve the use of directed electron beams. These effects are produced by arranging the tube elements in such a manner that potential fields are set up which confine the electrons into beams of high density. Efficient suppressor action is produced by the space-charge effects formed between the screen and plate. Very little power is taken by the screen.

The second harmonic distortion is intentionally high in order to reduce the third and higher order harmonics to a minimum. Elimination of the second harmonic distortion can be obtained by using these tubes in a push-pull arrangement. If only one tube is used in a resistance coupled circuit, second harmonics can be reduced by generating out-of-phase second harmonics in preceding audio stages or by degeneration. The Number "1" used in conjunction with the terms Class A

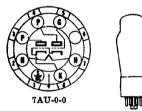

The Number "1" used in conjunction with the terms Class A and Class AB indicates that no grid current flows during any part of the input cycle. Likewise, the Number "2" indicates that grid current does flow during some part of the input cycle. The heater voltage rating for Types 6L6 and 6L6G is 6.3

The heater voltage rating for Types 6L6 and 6L6G is 6.3 volts. Precautions should be taken to prevent the heater voltage from exceeding a maximum value of 7.0 volts during line voltage fluctuations. A minimum potential difference between heater and cathode should be maintained.


The maximum plate and screen dissipation must not be exceeded. Provision should be made for line voltage changes, especially when fixed-bias operation is employed.

Transformer or impedance coupling devices are recommended and the resistance introduced in the grid circuit should be kept as low as possible. For fixed bias this resistance should not exceed 0.1 megohm. The maximum grid circuit resistance when self-bias is employed may be 0.25 megohm if the heater voltage does not exceed 7.0 volts. See first note above.

For Class AB operation the driver stage should be designed so as to be capable of supplying the required peak power with low distortion to the grids of the output stage.


6L6GA (Cont'd)

(Cont'd) 6L7

RATINGS

Heater Voltage AC or DC Heater Current. Maximum Plate Voltage. Maximum Screen Voltage. Maximum Plate Dissipation. Maximum Screen Dissipation. Maximum Heater-Cathode Voltage.	Mixer 6.3 0.3 300 150 1.0 1.5 90	Amplifier 6.3 Volts 0.3 Ampere 300 Volts 100 Volts 1.5 Watts 1.0 Watts 90 Volts
TYPICAL OPERATION-	MIXER	
Heater Voltage	6.3 250 100 -3 -10 12 2.4 7.1 Greater t 375 -30	6.3 Volts 250 Volts 150 Volts -6 Volts -15 Volts 18 Volts 3.3 Ma. 9.2 Ma. han 1 Megohm 350 μmhos -45 Volts
CLASS A1 AMPLIFIER		
Heater Voltage Plate Voltage (Gs). Control Grid Voltage (G). Control Grid Voltage (Gm). Plate Current. Screen Current. Plate Resistance (Approximate). Amplification Factor. Mutual Conductance At -6 Volts Bias on Grids G and Gm. At -10 Volts Bias on Grids G and Gm (Approximat At -10 Volts Bias on Grids G and Gm (Approximat		6.3 Volts. 250 Volts 100 Volts -3 Volts -3 Volts 5.3 Ma. 6.5 Ma. 0.6 Megohm 670 1100 μmhos 475 μmhos 5 μmhos

Sylvania Type 6N6G

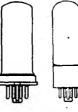
DIRECT COUPLED POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Bulb. Maximum Overall Length. Maximum Seated Height.		lium Octal 7 Pin ST14 4 5% 4 1/16 Any
DAWING		

RATINGS

Heater Voltage AU of DU	6.3 VOICS
Heater Current	0.8 Ampere
Maximum Output Plate Voltage	300 Volts
Maximum Input Plate Voltage	300 Volts
Maximum Heater-Cathode Voltage	90 Volts
And and a second control consider the second s	00 10100


TYPICAL OPERATION CLASS A AMPLIFIER

Heater Voltage	6.3 Volts
Heater Current	0.8 Ampere
Plate Voltage (Output)	300 Volts
Plate Voltage (Input)	300 Volts
Grid Voltage (Input)	0 Volt
Plate Current (Output)	42 Ma.
Plate Current (Input)	9 Ma.
Plate Resistance	24000 Ohms
Mutual Conductance †	$2400 \ \mu mhos$
Amplification Factor	58
Load Resistance	7000 Ohms
Power Output*	4.0 Watts
Power Output**	6.5 Watts
†Input grid—output plate Mutual Conductance.	
15 volta (m. a) signals total distortion EV	

*15 volts (r-m-s) signal; total distortion 5%. **Input grid begins to draw grid current; total distortion 10%.

6N7^{GT} Sylvania Type

PHYSICAL SPECIFICATIONS

	6N7	6N7GT	
Base		Intermediate Octal 8 Pin	
Bulb	Metal 8-6	Т9	
Maximum Overall Length	314"	35/16 "	
Maximum Seated Height	211 16	2 34 *	
Mounting Position	Any	Any	
D & WINKING			

RATINGS

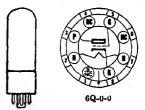
Heater Voltage AC or DC	6.3 Volts
Heater Current	0.8 Ampere
Maximum Plate Voltage	300 Volts
Maximum Dynamic Peak Plate Current (per Plate)	125 Ma.
Maximum Average Plate Dissipation (per Plate)	5.5 Watts
Maximum Heater-Cathode Voltage.	90 Volts
Maximum Heater-Cathode voltage	90 VOIts

TYPICAL OPERATION

CLASS AB₂ POWER AMPLIFIER

(Values are for both sections unless otherwise specified)

	Ideal	Typical
Heater Voltage	6.3	6.3 Volts
Heater current	0.8	0.8 Ampere
Grid Impedance at 400 Cycles	0	5161 Ohms
Plate Supply Impedance	Ō	1000 Ohms
Plate Voltage (Zero Signal)	300	300 Volts
Grid Voltage (DC)	0	0 Volt
Peak Signal Voltage (per Grid)	29	41 Volts
Plate Current (per Plate Zero Signal)	17.5	17.5 Ma.
Plate Current (per Plate Maximum Signal)	35	35 Ma.
Peak Grid Current (per Grid Maximum Signal)	20	22 Ma.
Load Resistance (Plate to Plate)	8000	8000 Ohms
Power Output.	10	10 Watts
Total Harmonic Distortion	4	8 Per Cent
tThe 516 ohms impedance shown consists of 500		resistance and 50 mh.
inductance.		


CLASS A DRIVER

(Both grids and both plates connected together at the socket)			
6.3	6.3 Volts		
0.8	0.8 Ampere		
250	294 Volts		
-5	-6 Volts		
6	7 Ma.		
11300	11000 Ohms		
3100	3200 µmhos		
35	35		
	$ \begin{array}{r} 6.3\\ 0.8\\ 250\\ -5\\ 6\\ 11300\\ 3100 \end{array} $		

For use in resistance coupled circuits see data in appendix.

6P5^{GT} Sylvania Type

MEDIUM-MU TR	IODE
--------------	------

PHYSICAL SPECIFICATIONS

Base,	Intermediate Octal 6 Pin
Bulb	. Т9
Maximum Overall Length	. 35/16"
Maximum Seated Height	/+
Mounting Position	. Any

(Cont'd) 6P5GT

TYPICAL OPERATION

CLASS A AMPLIFIER	
Plate Current	6.3 Volts 300 Ma. 250 Volts 5 Ma. 5500 Ohms 1450 µmhos 13.8 90 Volts Max.
Heater Voltage. 6.3 Plate Voltage (Approximate). 100 Grid Voltage (Approximate). -8 Plate Current—Adjust to 0.2 ma. with no a-c input signal.	6.3 Volts 250 Volts Max. –20 Volts
GRID LEAK DETECTOR Heater Voltage Plate Voltage Grid Leak	6.3 Volts 45 Volts to 5 Megohms 0025 μf.
	Type 6Q7 ^{GT} high-mu triode
PHYSICAL SPECIFICATIONS	
Octal 7 Pin Octal 7 Pin Bulb Metal 8-4 ST12 Cap Miniature Miniature Maximum Overall Length 3½" 4½" Maximum Seated Height 2½" 3½" Mounting Position Any Any	6Q7GT Small fer Metal Sleeve Octal 7 Pin T9 Miniature 3%4 2%4 Any
TYPICAL OPERATION Heater Voltage 6.3 Heater Current 300 Plate Voltage 100 Grid Voltage* -1.0 Plate Current* 0.8 Plate Convertent 58000 Mutual Conductance 1200 Amplification Factor 70 Heater-Cathode Voltage 90 *These are rating values only and not operating points with a For resistance coupled circuit data, see the appendix.	6 .3 Volts 300 Ma. 250 Volts -3 Volts 1.0 Ma. 58000 Ohms 1200 µmhos 70 90 Volts Max. coupling resistor.
	Type 6R7GT dium-mu triode

UMU PHYSICAL SPECIFICATIONS

UU

7V-1-1 (6R7) 7V-0-8 (6R7GT)

•--

	6 R 7	6R7GT
Base		Intermediate Octal 7 Pin
Bulb		T9
Сар	Miniature	Miniature
Maximum Overall Length		35/16" 234"
Maximum Seated Height	2%	2%"
Mounting Position	Any	Any

6R7^{GT} (Cont'd)

TYPICAL OPERATION

Heater Voltage	
Heater Current	
Plate Voltage	250 Volts
Grid Voltage	-9 Volts
Plate Current	9.5 Ma.
Plate Resistance	
Mutual Conductance	
Amplification Factor	
Undistorted Power Output	
Maximum Heater-Cathode Voltage	90 Volts
For resistance coupled circuit data, see appendix.	

6S4 Sylvania Type

MEDIUM MU TRIODE

9AC-0-0

PHYSICAL SPECIFICATIONS

BaseSmall E	
Bulb	. T-6½
Maximum Overall Length	25/8"
Maximum Seated Height	23%"
Mounting Position.	Anv

RATINGS

Heater Voltage (AC or DC)	6.3 Volts
Maximum Plate Voltage	500 Volts
Maximum Peak Plate Voltage*	2000 Volts
Maximum Grid Voltage DC	-50 Volt3
Maximum Peak Negative Pulse Grid Voltage	-200 Volts
Maximum Cathode Current	30 Ma.
Maximum Plate Dissipation	7.5 Watts
Maximum Peak Heater-Cathode Voltage	
Maximum Grid Circuit Resistance	
Minimum Cathode Bias Resistance	220 Ohms

*The duration of the voltage pulse must not exceed 15% of one scanning cycle. In typical television service this is 2.5 milliseconds.

TYPICAL OPERATION VERTICAL DEFLECTION AMPLIFIER#

	6.3 Volts
Heater Current	0.6 Ampere
Plate Voltage	450 Volts
Cathode Bias Resistor	820 Ohms
Grid Input Voltage (peak to peak of sawtooth)	60 Volts
(negative peaking component)	48 Volts
Plate Current	18 Ma.
Plate Output Voltage (peak positive pulse component)	800 Volts
(peak to peak of sawtooth)	350 Volts

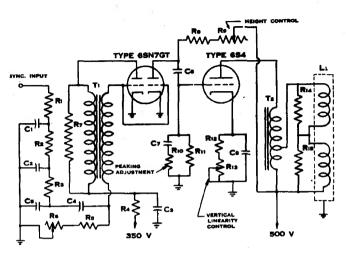
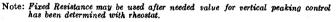

CLASS A1 AMPLIFIER

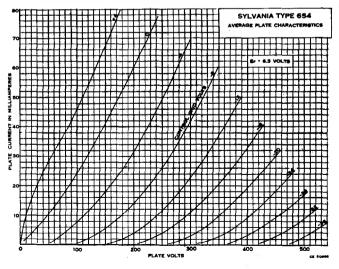
Plate Voltage	250 Volts
Grid Voltage	-8.0 Volts
Plate Current	26 Ma.
Mutual Conductance	$4500 \ \mu mhos$
Amplification Factor	16
Plate Resistance	3600 Ohms

*For operation in a television receiver using a vertical deflection output transformer with a step-down ratio of approximately 11 to 1 to match the vertical deflection yoke coils having an inductance of approximately 40 mh.

APPLICATION

Sylvania Type 6S4 is a medium-mu triode in the miniature construction having characteristics designed for use as a vertical deflection amplifier in television receivers. When used with well designed components and adequate power supply, sufficient drive is available for use with 16" picture tubes such as Sylvania Type 16TP4 at its maximum anode voltage.

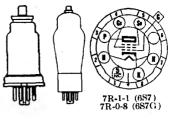

TYPICAL VERTICAL DEFLECTION CIRCUIT FOR SYLVANIA TYPE 16TP4 PICTURE TUBE


- C1 C2 C4 C5: $0.005 \mu f_{\star}$, 400 v C3: 4 μf_{\star} , 400 v, electrolytic C6: $0.1 \mu f_{\star}$, 600 v C7: $0.05 \mu f_{\star}$, 600 v

- C8: 100 μf., 50 v, electrolytic
 L1: Vertical Coils of 70° Deflection Yoke

- R1 R2 R3: 8200 Ohms, 0.5 watt
- R4: 0.1 megohm 0.5 watt R5 R8: 1.0 megohm, 0.5 watt
- R6: Potentiometer, 1.0 megohm, 0.5 watt R7: 10,000 ohms, 0.5 watt
- R9: Potentiometer, 3.0 megohms, 1 watt
- R10: Potentiometer, 5000 ohms, 0.5 watt (see Note) R11: 2.2 megohms, 0.5 watt R12: 820 ohms, 1 watt

- R13: Potentiometer, 3000 ohms,
- 1 watt, wire wound R14 R15: 560 ohms, 0.5 watt T1:
 - Vertical Blocking Oscillator Transformer, Stancor A-8121 or equivalent
- Vertical-Deflection-Output Transformer, Stancor Å-8116 (using two windings) or RCA-222T1 (Autotransformer) T2:

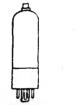


6S7, G Sylvania Type

t

REMOTE CUT OFF RF PENTODES

PHYSICAL SPECIFICATIONS


Base	Metal 8-4 Miniature	697G Small Octal 7 Pin ST12 Miniature 4 ¹⁵ 4"
Maximum Seated Height Mounting Position	3 ½ 8 " 2 ½ n" Any	415/2" 329/2" Any
	OPERATION R (CLASS A)	
Heater Voltage	6.3	6.3 Volts

rieater voltage	0.0	່ວ່າບແຮ
Heater Current		0.150 Ampere
Plate Voltage	135	250 Volts Max.
Grid Voltage	-3	-3 Volts Min.
Screen Voltage	67.5	100 Volts Max.
Suppressor		o Cathode
Plate Current	3.7	8.5 Ma.
Screen Current	0.9	2.0 Ma.
Plate Resistance (Approximate)		1.0 Megohm
Mutual Conductance		1750 µmhos
Grid Voltage for 10 µmhos		38.5 Volts
Heater-Cathode Voltage		90 Volts Max.

658^{GT} Sylvania Type

يعمل أيعار المراجب ومعطف المراج

TRIPLE DIODE-TRIODE

8CB-0-2

PHYSICAL SPECIFICATIONS

Bulb	igth	Intermediate Octal 8 Pin T-9 Miniature 3 %" 3 'm"
Mounting Position	• • • • • • • • • • • • • • • • • • • •	Any

RATINGS

Heater Voltage	6.3 Volts
Heater Current	300 Ma.
Maximum Plate Voltage	300 Volts
Maximum Plate Dissipation	0.5 Watts
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Canacitances	

TYPICAL OPERATION

Heater Voltage	6.3	6.3 Volts
Heater Current.	300	300 Ma.
Plate Voltage	100	250 Volts
Grid Voltage	-1.0	-2.0 Volts
Plate Current	0.4	0.9 Ma.
Mutual Conductance		1100 μ mhos
Plate Resistance		91,000 Ohms
Amplification Factor	100	100

Reference should be made to Type 7B6 for curves and resistance coupled data.

Sylvania Type 6**SA7**^{GT}

HEPTODE CONVERTER

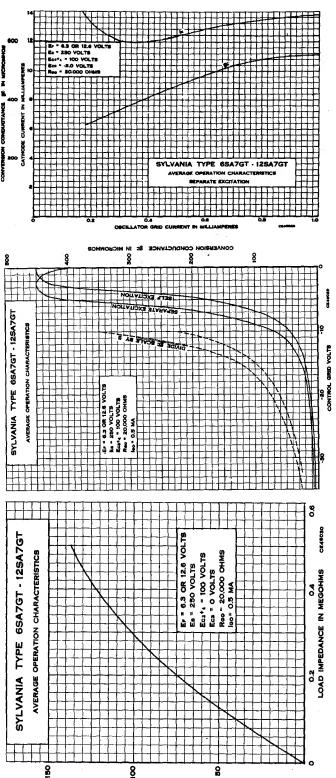
PHYSICAL SPECIFICATIONS

BaseSmall Bulb Maximum Overall Length Maximum Seated Height Mounting Position	6SA7 Wafer Octal 8 Pin Metal 8-1 2 ⁵ / ₈ " 2 ¹ / ₄ " Any	68A70 Intermediate 79 35% 23% Any	Octal 8 Pin
Direct Interelectrode Capacitance			
Grid G to all other Electrodes (Sign Plate to all other Electrodes (Mixer Grid Go to all other Electrodes	ai Input)	58A7* σuf. μuf. μμf.	6SA7GT** 9.5 μμf. 9.5 μμf. 8.0 μμf.

I M LE LO ALL OLLET MECHOUES (MILLET OULDUL)		σ.σ μμι.
Grid Go to all other Electrodes	7 μμf.	8.0 µµf.
Grid G to Plate	0.13 µµf. Max.	0.5 µµf.
Grid Go to Grid G	0.15 µµ1. Max.	0.4 µµ1.
Grid Go to Plate.	0.06 µµf. Max.	0.4 µµf.
Grid Go to all other Electrodes except K	4.4 μμf.	5.0 µµf.
Grid Go to K	2.6 µµf.	3.5 µµf.
K to all other Electrodes except Grid Go	5 µµf.	20 µµf.
*With shell connected to cathode.		

**With 15% diameter shield (RMA Std. 308) connected to cathode.

TYPICAL OPERATION


	Salf Erai	kati - m t	Samanat	Wasitation
	Self-Exci			e Excitation
Heater Voltage	6.3	6.3	6.3	6.3 Volts
Heater Current	300	300	300	300 Ma.
Plate Voltage	100	250	100	250 Volts
Control Grid Voltage				
(Grid G)	0	0	-2	-2 Volts
Screen Voltage (Grid Gs)	100	100	100	100 Volts
Grid No. 5 and Shell				
'Voltage	0	0	0	0 Volt
Oscillator Grid Resistor				
(Grid Go)		20000	20000 2	20000 Ohms
Plate Current	3.2	3.4	3.3.	3.5 Ma.
Screen Grid Current	8	8	8.5	8.5 Ma.
Oscillator Grid Current	0.5	0.5	0.5	0.5 Ma .
Plate Resistance (Approx.)	0.5	0.8	0.5	1.0 Megohm
Conversion Transconductance	425	450	425	450 μmhos
Control Grid Voltage				
(2 µmhos Conv. Cond.)	-35	-35	-35	–35 Volts
Max. Heater Cathode Voltage		90	90	90 Volts
†Values shown are approx	imate and	are for a	Hartley circuit	with a feedback

Ivalues shown are approximate and are for a Hartley circuit with a feedback of approximately 2 volts peak in the cathode circuit.

APPLICATION

Sylvania Types 6SA7, GT are single-ended pentagrid converters for service similar to other pentragrid converter types. The oscillator section is designed to operate in a Hartley circuit with the cathode connected to a tap on the oscillator coil. The mutual conductance between grid Go and grid Gs tied to the plate (not oscillating) is approximately 4500 umhos when grids Go, G and the shell are at zero volts, with grid Gs and plate at 100 volts. Characteristics for self-excitation in a Hartley circuit are shown above. Other application notes may be obtained by referring to Type 7Q7.

6SA7GT (Cont.)

CONVERSION GAIN

Sylvania Type 6SB7Y

HEPTODE CONVERTER

PHYSICAL SPECIFICATIONS

Base	Micanol Small Wafer Octal 8 Pin
Bulb	
Maximum Overall Length	
Maximum Seated Height	21/5"
Mounting Position	Any

RATINGS

Heater Voltage AC or DC Heater Current. Maximum Plate Voltage Maximum Screen Voltage Maximum Screen Supply Voltage Maximum Plate Dissipation Maximum Total Cathode Current Maximum Control Grid Voltage Range Maximum Heater-Cathode Voltage	100 to	300 Ma. 300 Volts 100 Volts 300 Volts 2.0 Watts 1.5 Watts 22 Ma. +0 Volts
Direct Interelectrode Capacitances:		
Grid G to all other electrodes (signal input) Plate to all other electrodes (Mixer output)) Grid Go to all other electrodes (oscillator in Grid G to plate* Grid Go to all dexept cathode. Grid Go to all except cathode. Grid Go to cathode. Cathode to all except Go *With shell connected to cathode.	*	2 μμf. 3 μμf. Max. 3 μμf. Max. 3 μμf. Max. 3 μμf. Max. 3 μμf. 4 μμf.

TYPICAL OPERATION

	Separate	Excitation*	for 88-108 Mc.
Heater Voltage	. 6.3	6.3	6.3 Volts
Heater Current	. 300	300	300 Ma.
Plate Voltage	. 100	250	250 Volts
Screen Voltage	. 100	100	Volts
Screen Supply Voltage			250 Volts
Screen Dropping Resistor			12,000 Ohms
Control Grid Voltage	1.0	-1.0	0 Volts
Oscillator Grid Resistor	20.000	20.000	22,000 Ohms
Plate Resistance	. 0.5	1.0	Megohm
Conversion Transconductancet		950	µmhos
Conversion Transconductance [†] at Eg=	-20 3.5	3.5	\dots μ mhos
Signal Frequency			88 108 Mc.
Oscillation Frequency.			98.7 118.7 Mc.
Plate Current.	3.6	3.8	6.8 6.5 Ma.
Screen Current	10.2		12.6 12.5 Ma.
Oscillator Grid Current	0.3		0.13 0.14 Ma.
*Substantially the same characterist	ice may h		
ton by noducing the mid walts as to 0	all a lite	c obtained a	a sen excited oscina-

tor by reducing the grid voltage to 0 volts. The oscillator mutual conductance is approximately 8000 micromhos with Ego= 0, Egs = Ep = 100 volts, Eg = 0.

APPLICATION

Sylvania Type 6SB7Y is very similar to Type 6SA7GT except for increased oscillator strength and conversion conductance which provide improved performance at high frequencies.

Sylvania Type 6SC7

HIGH-MU DUO TRIODE

Golf Excitatio

00-1-0

Base	Small Wafer Octal 8 Pin
Bulb	
Maximum Overall Length Maximum Seated Height	
Maximum Seated Height	
Mounting Position	Any

6SC7 (Cont'd)

TYPICAL OPERATION CLASS A AMPLIFIER (ONE TRIODE)

Heater Voltage AC or De	с		6.3 Volts
Heater Current			300 Ma.
Plate Voltage			250 Volts Max.
Grid Voltage			-2.0 Volts
Plate Current			2.0 Ma.
Plate Resistance	•••••		1225 umbor
Mutual Conductance Amplification Factor	•••••	• • • • • • • • • • • • • • • • • • • •	70
Heater-Cathode Voltage.			
TVDICAI	ODER & TION	AS DHASE INVER	TER

TYPICAL OPERATION AS PHASE INVERTER

Plate Supply Voltage	90	300 Volts
Plate Current per Section	0.15	0.65 Ma.
Plate Load Resistor (per Plate)	0.25	0.25 Megohm
Self-Bias Resistor	3750	1675 Ohms
Grid Resistor for Following Tubes	0.5	0.5 Megohm
Voltage Amplification (At 5 volts RMS Output)	30	42
Peak Output Voltage (RMS)*	18	110 Volts
*At start of grid current.	10	110 10105
"At start of grid current.		

APPLICATION

Sylvania Type 6SC7 is a double triode amplifier in the single-ended construction. It is so designed that it is specially adaptable for phase inverter service. For resistance coupling data reference should be made to Type 7F7.

6SD7^{GT}. Sylvania Type

SEMI-REMOTE CUT-OFF

RF AMPLIFIER

PHYSICAL SPECIFICATIONS

BaseBulb	Small Wafer Octal 8 Pin, Metal Sleeve T9
Maximum Overall Length. Maximum Seated Height. Mounting Position.	
RATIN	IGS
Heater Voltage AC or DC	0.300 Ampere 300 Volts 300 Volts 125 Volts 4 Watts 0.4 Watt 90 Volts
TYPICAL OP CLASS A1 A	
Heater Voltage	6.3 6.3 Volts
Heater Current. Plate Voltage. Screen Voltage.	100 250 Volts

Plate Voltage	100	250 Volts
Screen Voltage	100	100 Volts
Control Grid Voltage	-2	-2 Volts
Self-Bias Resistor	260	255 Ohms
Suppressor Voltage	0	0 Volt
Plate Resistance (Approximate)		1.0 Megohm
Mutual Conductance.	3350	3600 µmhos
Control Grid Voltage for 20 µmhos		-11 Volts
	5.7	6.0 Ma.
Screen Current	2.0	1.9 Ma.
		T 11T.001

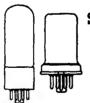
Sylvania Type 6SE7^{GT}

SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base	
Bulb	Т9
Maximum Overall Length	
Maximum Seated Height	
Mounting Position	Any

RATINGS


Heater Voltage AC or DC Heater Current. Maximum Plate Voltage. Maximum Screen Supply. Maximum Screen Voltage Maximum Plate Dissipation. Maximum Screen Dissipation. Minimum External Control Grid Voltage. Maximum Heater-Cathode Voltage.	0.300 Ampere 300 Volts 300 Volts 125 Volts 4.0 Watts 0.4 Watt 0 Volt
Direct Interelectrode Capacitances:* Grid to Plate	0.005 μμf. Max.

The function of the function

TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Current. Plate Voltage Grid Voltage. Grid Voltage. Plate Resistance (Approximate) Mutual Conductance Control Grid Voltage for Cut Off. Plate Current. Screen Current.	$ \begin{array}{r} 100 \\ 100 \\ -1 \\ 0.1 \\ 3000 \\ -5 \\ 5.5 \\ 2.4 \\ \end{array} $	6.3 Volts 0.300 Ampere 250 Volts 100 Volts -1.5 Volts 1.0 Megohm 3100 µmhos -5 Volts 4.5 Ma. 1.5 Ma.

Sylvania Type $6SF5^{GT}$

HIGH-MU TRIODE

6AB-1-0 (6SF5) 6AB-0-0 (6SF5GT)

PHYSICAL	SPECIFICATIONS
LIIIDIOUD	DETOTIOUTOUD

_	6SF5	6SF5GT	
Base			6 Pin
Bulb	Metal 8-1	T 9	
Maximum Overall Length Maximum Seated Height	2 5/8 * 2 1/4 *	35/16 2 34	
Mounting Position		Z %	
Direct Interelectrode Capaci			
		6SF5* 6SF5G	
Grid to Plate		2.4 2.6 µ	.f.
Input		4.0 4.2 µ	
*With shell connected to ca	ithode.	3.6 3.8 μμ	ıf.

**With 1516" diameter shield (RMA Std. M8-308) connected to cathode.

6SF5^{GT} (Cont'd)

TYPICAL OPERATION CLASS A AMPLIFIER

Heater Voltage	
Heater Current	0.3 Amperes
Plate Voltage	250 Volts Max.
Grid Voltage	-2 Volts
Plate Current.	
Plate Resistance	
Mutual Conductance	
Amplification Factor	
Heater-Cathode Voltage	

For additional application notes and curve data refer to Type 7B4.

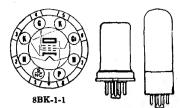
6SF7 Sylvania Type

DIODE RF PENTODE

7AZ-1-1

PHYSICAL SPECIFICATIONS

Base Small Wafer Octal 8 Pin Bulb Metal 8-1 Maximum Overall Length 2 ½ * Maximum Seated Height 2 ½ * Mounting Position Any	
Mounting Position Any D & TIMAC	


RATINGS

Heater Voltage AC or DC Heater Current. Maximum Plate Voltage Maximum Screen Supply Voltage.	6.3 Volts 300 Ma. 300 Volts 300 Volts 100 Volts
Maximum Screen Voltage. Maximum Plate Dissipation. Maximum Screen Dissipation.	3.5 Watts 0.5 Watt
Minimum Control Grid Bias. Minimum Diode Current at 10 Volts DC Maximum Continuous Diode Current. Maximum Heater-Cathode Voltage	0 Volt 0.8 Ma. 1.0 Ma. 90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate Input Output Pentode Grid to Diode Plate Pentode Plate to Diode Plate *With shell connected to cathode.	5.5 μμf. 6.0 μμf.

TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Voltage	6.3	6.3 Volts
Heater Current	800	300 Ma.
Plate Voltage	100	250 Volts
Screen Voltage	100	100 Volts
Grid Voltage	-1	-1 Volts
Self-Bias Resistor	65	65 Ohms
Plate Resistance (Approximate)	0.2	0.7 Megohm
Mutual Conductance	1975	2050 µmhos
Control Grid Voltage for 10 µmhos	-35	-35 Volts
Plate Current	12.0	12.4 Ma.
Screen Current	3.4	3.3 Ma.

Refer to data on Type 7B6 for diode characteristics.

Sylvania Type 6SG7^{GT}

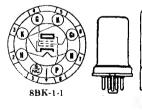
SEMI-REMOTE CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

	6SG7	6SG7GT
/	Small Wafer	Small Wafer Octal
Base		8 Pin Metal Sleeve
Bulb		Т9
Maximum Overall Length		35 16 1 2 34
Maximum Seated Height	2 ¹ 16	234
Mounting Position	. Any	Any

RATINGS

Heater Voltage AC or DC	6.3 Volts
Heater Current	300 Ma.
Maximum Plate Voltage	300 Volts
Maximum Screen Supply	300 Volts
Maximum Screen Voltage	200 Volts
Maximum Plate Dissipation	3 Watts
Maximum Screen Dissipation	0.6 Watt
Minimum External Control Grid Bias	0 Volt
Maximum Heater-Cathode Voltage	90 Volts
Distant and the second second second	


Direct Interelectrode Capacitances:

	0367*	63676
Grid to Plate	. 0.003	.0035 µµf.
Input		8.5 uuf.
Output	7.0	7.0 µµf.
Output *Shell connected to cathode.		

**With 15% diameter tube shield (RMA Std. 308) connected to cathode.

TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Voltage	6.3	6.3	6.3 Volts
Heater Current	300	300	300 Ma.
Plate Voltage	100	250	250 Volts
Screen Voltage	100	125	150 Volts
Control Grid Voltage	-1	-1	-2.5 Volts
Self-Bias Resistor	90	60	190 Ohms
Plate Resistance (Approximate)	0.25	0.9	>1.0 Megohm
Mutual Conductance	4100	4700	4000 µmhos
Plate Current.	8.2	11.8	9.2 Ma.
Screen Current	3.2	4.4	3.4 Ma.
Control Grid Voltage for 40 µmhos	-11.5	-14.0	-17.5 Volts

. Max.

SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

UDUTO

Base			Small Wafer Octal
Bulb.		Octal 8 Pin Metal 8-1	8 Pin Metal Sleeve T9
Maximum Overall Length		21/4	35/16 " 2 3/4 "
Mounting Position	• - • •	. Any	Any

6SH7^{GT} (Cont'd)

RATINGS


Heater Voltage AC or DC		6.3 Volts
Heater Current		0.300 Ampere
Maximum Plate Voltage		300 Volta
Maximum Screen Supply		300 Volts
Maximum Screen Voltage		150 Volts
Maximum Plate Dissipation		3.0 Watts
Maximum Screen Dissipation		0.7 Watt
Minimum External Control Grid Bias		0 Volt
		90 Volts
Maximum Heater Cathode Voltage		JU VULUS
Direct Interelectrode Capacitances:	• • • • • • • • • • • • • • • •	30 V 0108
Direct Interelectrode Capacitances:	6SH7*	6SH7GT**
Direct Interelectrode Capacitances: Grid to Plate	6SH7* 0.003	6SH7GT** 0.004 μμf. Max.
Direct Interelectrode Capacitances: Grid to Plate	68H7* 0.003 8.5	6SH7GT** 0.004 μμf. Max. 8.5 μμf.
Direct Interelectrode Capacitances: Grid to Plate	68H7* 0.003 8.5	6SH7GT** 0.004 μμf. Max.

TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Voltage	6.3	6.3 Volts
Heater Current	0.300	0.300 Ampere
Plate Voltage	100	250 Volts
Screen Voltage	100	150 Volts
Control Grid Voltage	-1	-1 Volts
Self-Blas Resistor	135	65 Ohms
Plate Resistance (Approximate)	0.35	0.9 Megohm
Mutual Conductance		4900 µmhos
Grid Bias for 10 µa. Plate Current		-5.5 Volts
Plate Current	5.3	10.8 Ma.
Screen Current	2.1	4 1 Ma.

6SJ7^{GT} Sylvania Type

SHARP CUT-OFF RF PENTODE

8N-1-5 (6SJ7GT)

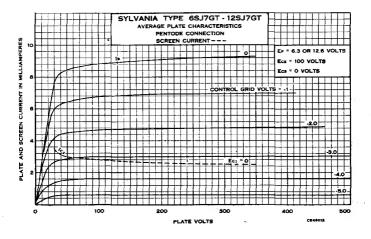
PHYSICAL SPECIFICATIONS

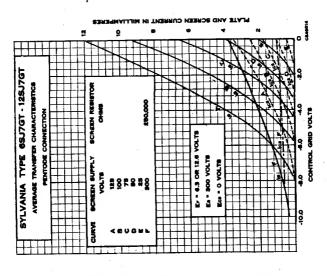
	6SJ7	6SJ7GT
Base	Small Wafer	Small Wafer Metal
	Octal 8 Pin	Sleeve Octal 8 Pin
Bulb	Metal 8-1	T9
Maximum Overall Length		35.4
Maximum Seated Height	21/4	_T9 35/16 " 2 3/4 "
Mounting Position	Any	Āny
Direct Interelectrode Capacitances:*		
	68J7*	6SJ7GT**
Grid to Plate	0.005	0.005 µµf. Max.
Input		6.3 µµf.
Output		7.5 µµf.
*Shell connected to cathode.		
##With 15/ / diameter shield (DMA atd 202)	commonted to	enthodo

*With 15% diameter shield (RMA std. 308) connected to cathode.

TYPICAL OPERATION CLASS A1 AMPLIFIER PENTODE CONNECTION

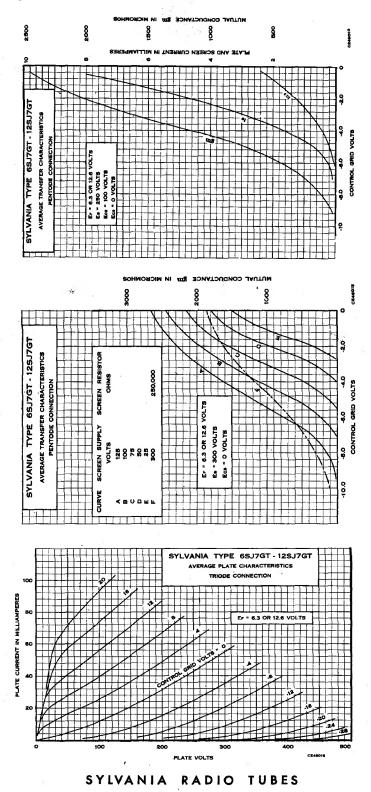
Heater Voltage	3 6.3 Volts
Heater Current 0.	
Plate Voltage	0 250 Volts Max.
Grid Voltage	3 –3 Volts
Screen Voltage 10	0 100 Volts Max.
Suppressor	
Plate Current	
Screen Current	9 0.8 Ma.
Plate Resistance (Approximate) 0.	7 1.0 Megohm
Mutual Conductance 157	
Heater-Cathode Voltage	0 90 Volts Max.

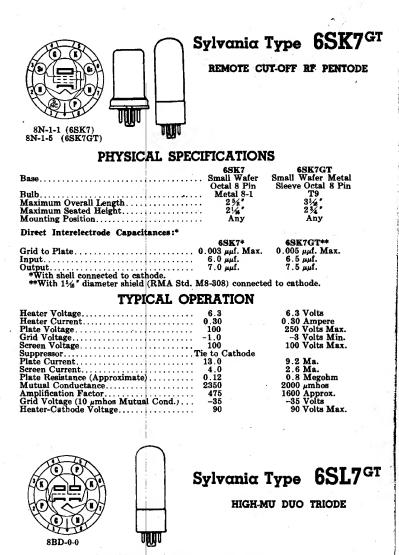

(Cont'd) 6SJ7GT


TRIODE CONNECTION

Heater Voltage	6.3	6.3 Volts
Heater Current.	0.3	0.3 Ampere
Plate Voltage	180	250 Volts Max.
Grid Voltage	-6.0	-8.5 Volts
Amplification Factor	19	19
Plate Resistance	8200	7600 Ohms
Mutual Conductance	2300	2500 μmhos 9 2 Ma.
Plate Current	6.0	9.Z M.a.

APPLICATION


Sylvania Types 6SJ7, GT are single-ended r-f pentode tubes having a sharp cut-off characteristic and designed for appli-cations similar to those for Sylvania Type 6J7. Characteristics for this tube are also very similar to Type 7C7, but are not identical. For additional information on circuit application refer to Type 7C7. Resistance coupled circuit data may be found in the appendix.



TUBES SYLVANIA RADIO

6SJ7GT (Cont'd)

PHYSICAL SPECIFICATIONS

Base	Intermediate O	ctal 8 Pin
Bulb		T9
		35/4"
Maximum Seated Height		234"
Mounting Position		Any
•		

TYPICAL OPERATION*

Heater Current Plate Voltage	 0.300 Ampere 250 Volts
Self-Bias Resistor	 870 Ohms 2.3 Ma.
Mutual Conductance	 1600 μmhos 70

6SN7^{GT} Sylvania Type

MEDIUM-MU DUO TRIODE

8BD-0-0

PHYSICAL SPECIFICATIONS

UNIO

	PHISICAL S	L DOIL IOU	110119		
Base			Interm	ediate Oct	tal 8 Pin
Bulb Maximum Maximum	Overall Length Seated Height Position	· · · · · · · · · · · · · · · · · · ·			T9 35/16 2 3/4 Any
	RA	TINGS			
Heater Vo Heater Cu	oltage AC or DC			6.3	Volts Ampere
Direct In	terelectrode Capacitances:	•			
	-		Triode 1§	Triod	
Input. Output *Withou	Plate ut shield. No. 1 connects to pins 4, 5	•••••	3.8 2.8 0.8 No. 2 is co	4.0 3.0 1.2 onnected t	μμί. μμί.
ت ا	TYPICAL OPERA AND CHAR			NONS	
	CLASS A1 AMPLIE	TIER (PER	SECTI	ON)	
Heater Cu Plate Volt Grid Volt Self Bias Plate Cur Plate Resi Mutual C Amplificat	bltage. Irrent. age. age. istance. onductance. tion Factor resistance coupled data		0.6 90 0 10 700 20	6.3 0.6 250 -8 900 9.0 7700 2600 20 4 in apr	Volts Ampere Volts Volts Ohms Ma. Ohms µmhos
6SQ7 ^{G1}	_	· (
DUODIOD	e high-mu triode		'		
			uuuu ,	8Q-1-1 (Q-1-3 (6)	
	PHYSICAL S	DECIFICA			
	FRISIONE S	680 680		6SQ70	a n
Base		Small V Octal	Vafer S 8 Pin	mall Waf Sleeve Oct	er Metal al 8 Pin
Maximun Mounting	Overall Length Seated Height Position	25 21/1 	8	T9 35/16 284 Any	-
Grid to Input.	nterelectrode Capacitances: Plate	1.0 3.5	2	1.8 µ 4.2 µ 3.4 µ	աք. աք.

With shell connected to cathode for type 6SQ7G. Without shield for type 6SQ7GT.

TYPICAL OPERATION

CLASS A AMPLIFIER (TRIODE UNIT)

Heater Voltage	6.3	6.3 Volts
Heater Current		300 Ma.
		250 Volts
Plate Voltage		-2 Volts
Grid Voltage		
Plate Current	0.5	1.1 Ma.
Plate Resistance	110.000	85.000 Ohms
Mutual Conductance	925	1175 µmhos
	100	100
Amplification Factor		
Maximum Heater-Cathode Voltage	90	90 Volts

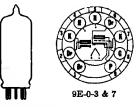
Except for capacitances the electrical characteristics and circuit applications are the same as those for Sylvania Type 7B6 and reference can be made to that type for any necessary information.

Sylvania Type 6SR7GT B-Q-1-1 (6SR7) SQ-1-1 (6SR7) SQ-1-1 (6SR7) B-Q-1-1 (6SR7) DUODIODE MEDIUM-MU TRIODE
PHYSICAL SPECIFICATIONS
6SR7 6SR7GT Base
RATINGS AND OPERATION
Heater Voltages AC or DC
Sylvania Type 6SS7 REMOTE CUT-OFF RF PENTODE
8 N-1- 0
PHYSICAL SPECIFICATIONS
BaseSmall Wafer Octal 8 Pin
Bate Maximum Overall Length Maximum Overall Length 2%" Maximum Seated Height 2%" Mounting Position Any
RATINGS
Heater Voltage AC or DC
TYPICAL OPERATION
CLASS A1 AMPLIFIER
Heater Voltage. 6.3 8.3 Volts Heater Current. 150 150 Ma. Plate Voltage. 100 250 Volts Screen Voltage 100 200 Volts

Heater Voltage	6.3	6.3 Volts
Heater Current	150	150 Ma.
Plate Voltage	100 -	250 Volts
Screen Voltage	100	
Grid Voltage		-3.0 Volts
Suppressor		
Plate Resistance (Approximate)		
Mutual Conductance		1850 µmhos
Grid Voltage for 10 µmhos		-35 µmhos
Plate Current	12.2	9.0 Ma.
Screen Current	3.1	2.0 Ma.

6ST7 Sylvania Type

DUODIODE TRIODE


PHYSICAL SPECIFICATIONS

Maximum Overall Length. 2 % Maximum Seated Height. 2 % Mounting Position. An	5
RATINGS	-
Heater Voltage AC or DC. 6.3 Vol Heater Current. 0.15 Am Maximum Plate Voltage. 250 Vol Maximum Heater-Cathode Voltage. 90 Vol TYPICAL OPERATION CLASS A. AMDUIFER	pere lts lts
CLASS A1 AMPLIFIER Heater Voltage	ipere lts lts

8500 Ohms 1900 μmhos 9.5 Ma. Plate Resistance... Mutual Conductance . Plate Current Reference should be made to Type 7E6 for further data. For diode information, refer to Lock-In Type 7B6.

6T8 Sylvania Type

TRIPLE DIODE TRIODE

PHYSICAL SPECIFICATIONS

Base. Small Button 9 Pin Bulb. T-6½ Maximum Overall Length. 2½" Maximum Seated Height. 1½" Mounting Position. Any	
RATINGS	
Heater Voltage AC or DC. 6.3 Volts Heater Current. 450 Ma. Maximum Plate Voltage. 300 Volts Maximum Plate Dissipation 1.0 Watt Maximum Diode Current per Plate 90 Volts Direct Interelectrode Capacitances:* 5.0 Ma. Grid to each diode plate. 0.035 μμf. Max. Diode input (pins I or 6). 3.8 μμf.	
Diode input (pin 2) $4.5 \mu\mu f.$	
*With no external shield.	
TYPICAL OPERATION	
Heater Voltage AC or DC	

Heater Voltage AC or DC	
Heater Current 45	0 450 Ma.
Plate Voltage	
Grid Voltage	0 -3.0 Volts
Plate Current	8 1.0 Ma.
Amplification Factor	0 70
Mutual Conductance	0 1200 μmhos
Plate Resistance	0 1200 μmhos 0 58,000 Ohms

APPLICATION

Sylvania Type 6T8 is a triple diode triode designed for use in FM-AM sets. When used as a ratio detector it is recom-mended that pins 1 and 2 be used as the diodes. For curve data reference should be made to Type 6AQ6, and resistance coupled data may be found in the appendix under

Type 6Q7GT.

Sylvania Type **6U4**GT

HALF WAVE RECTIFIER

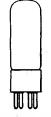
PHYSICAL SPECIFICATIONS

baseintermediate U	
Bulb.	Т-9
Maximum Overall Length	33/8"
Maximum Seated Height	
Mounting Position.	Anv
Mountaing Tostaton	Any

RATINGS

Heater Voltage AC or DC	
Heater Current 1 Maximum Peak Inverse Plate Voltage	.2 Amperes
Television Damper Service*	50 Volta
Conventional Rectifier Service	
Maximum Peak Plate Current	
	38 Ma.
Maximum Hot-Switching Transient Plate	
Current for Duration of 0.2 Second Maximum	85 Amperes
Maximum Peak Heater-Cathode Voltage (Conventional Rectifier).	
	00 Volts
	10 Volts
Maximum Peak Heater-Cathode Voltage (Television Damper)	FO 37-14-
Heater Negative With Respect to Cathode*	10 Volts
Heater Positive With Respect to Cathode 1 Tube Voltage Drop at 250 Ma. DC	01 Walta
*Duration of voltage pulse not to exceed 15% of one scanning cycle line, 30 frame television system 15% of one scanning cycle is 10 microse	. In the 525 conds.

TYPICAL OPERATION HALF WAVE RECTIFIER


Heater Voltage	
AC Plate Voltage (RMS)	350 Volts
Filter-Input Capacitor	20 μf.
Total Effective Plate-Supply Impedance	145 Ohms
DC Output Current.	125 Ma.
DC Output Voltage	

APPLICATION

Sylvania Type 6U4GT is a half wave rectifier featuring the unipotential cathode and a high peak heater-cathode rating, eliminating the necessity for a low-capacitance heater isolation transformer in television horizontal deflection circuits using a high-impedance yoke with direct coupling.

4CG-0-0

Sylvania Type 6U5

ELECTRON RAY INDICATOR TUBE

PHYSICAL SPECIFICATIONS

Base	Small 6 Pin
Maximum Overall Length	4 /4
Maximum Seated Height Mounting Position	Any

RATINGS

Heater Voltage AC or DC	6.3 Volts
Heater Current	300 Ma.
Maximum Plate Supply Voltage	285 Volts
Maximum Target Voltage	285 Volts
Minimum Recommended Target Voltage	125 Volts
Maximum Heater-Cathode Voltage	90 Volts

6U5 (Cont'd)

TYPICAL OPERATION

Heater Voltage	6.3	6.3	6.3 Volts
Heater Current	300	300	300 Ma.
Plate Supply Voltage	100	200	250 Volts
Target Supply Voltage	100	200	250 Volts
Plate Current (Triode Unit)*	0.19	0.19	0.24 Ma. Max.
Target Current (Approximate)*	1.0	3.0	4.0 Ma.
Grid Voltage (Triode Unit) † (Approx.).	0.0	0.0	0.0 Volt
Grid Voltage (Triode Unit) †† (Approx.).	-8.0	-18.5	-22.0 Volts
Triode Plate Resistor	0.5	1.0	1.0 Megohm
*With triode grid voltage of zero volts.			

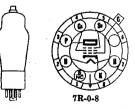
†For shadow angle of 90 degrees. ††For shadow angle of zero degrees.

The discontinued Type 6T5 had characteristics identical with the 6U5, but the visual indication was annular instead of fan-shaped. The 6U5 should be used as the replacement tube for Type 6T5, Type 6H5 and Type 6G5.

6U6^{GT} Sylvania Type

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS


Base	mediate	Octal 7 Pin
Bulb		. T9
Maximum Overall Length		. 35/16 23/4
Maximum Seated Height		234
Mounting Position		
Mounting Position		. Any

TYPICAL OPERATION

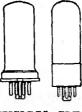
Heater Voltage AC or DC	6.3	6.3 Volts
Heater Current	0.75	0.75 Ampere
Plate Voltage	110	200 Volts
Screen Voltage		135 Volts
Grid Voltage		-14.0 Volts
Plate Current		55.0 Ma.
	4.0	3.0 Ma.
Mutual Conductance	5600	6200 µmhos
Load Resistance	2000	3000 Ohms
	2.0	5.5 Watts
Maximum Heater-Cathode Voltage	90	90 Volts

6U7G Sylvania Type

REMOTE CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base	Small Octal 7 Pin
Bulb	ST-12 Long
Сар	Miniature
Maximum Överall Length Maximum Seated Height Mounting Position	4 /8
Maximum Seated Height	
Mounting Position	Any


(Cont'd) 6U7G

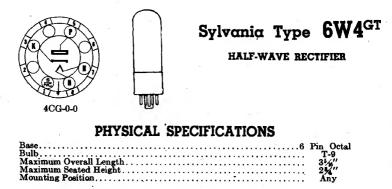
RATINGS

Heater Voltage AC or DC Heater Current. Maximum Plate Voltage. Maximum Screen Voltage. Maximum Screen Supply Voltage. Grid Bias Voltage (Minimum External). Maximum Plate Dissipation. Maximum Heater-Cathode Voltage.	0.3 Ampere 300 Volts 100 Volts 300 Volts 0 Volt 2.25 Watts 25 Watts
TYPICAL OPERATION	
CLASS & AMPLIFIER	
CLASS A AMPLIFICA	
Heater Voltage 6.3	6.3 Volts
Heater Current 0.30	0.30 Ampere
Plate Voltage 100	250 Volts
There follow be the second sec	-3 Volts
Cite Coluge	
Screen Voltage	100 Volts
Suppressor Tie to Catl	node
Plate Current	8.2 Ma.
	2.0 Ma.
Plate Resistance (Approximate) 0.25	0.8 Megohm
Mutual Conductance	1600 µmhos
Mutual Conductance	1600 μmhos 50 Volts

Sylvania Type 6V6^{GT}

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS


	6V6	6V6GT
Base	Small Wafer Octal 7 Pin	Intermediate Octal 7 Pin
Bulb	Metal 8-6	T 9
Maximum Overall Length	3¼″	35/4"
Maximum Seated Height	211/18"	35/16 *
Mounting Position	Any	Any
	DEMON	

RATINGS

· · · · · · · · · · · · · · · · · · ·		One Tube
Heater Voltage AC or DC		6.3 Volts
Heater Current		0.45 Ampere
Maximum Plate Voltage		
Maximum Screen Voltage		285 Volts
Maximum Plate Dissipation	******	
Maximum Screen Dissipation		2 Watts
Maximum Heater-Cathode Voltage	• • • • • • •	90 Volts

APPLICATION

For further data, curves, etc., reference should be made to corresponding Lock-In type 7C5 which is identical in electrical characteristics.

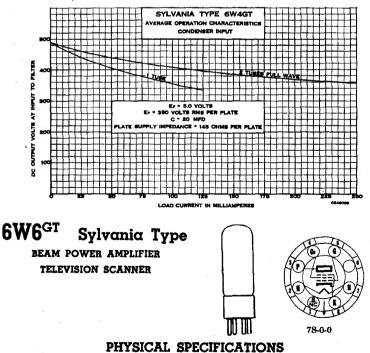
6W4^{GT} (Cont'd)

RATINGS

Heater Voltage AC or DC	6.3 Volts
Heater Current	1.2 Amperes
Tube Drop at 250 Ma. DC	21 Volts
Maximum Peak Inverse Plate Voltage	
For Television Damper Service*	3500 Volts
For Conventional Rectifier Service	1250 Volts
Maximum Peak Plate Current	600 Ma.
Hot Switching Plate Current for Duration of 0.2 Second Max	3.5 Amperes
Maximum DC Plate Current	125 Ma.
Maximum Peak Heater-Cathode Voltage	
Heater Negative with respect to Cathode*#	2100 Volts
Heater Positive with respect to Cathode	100 Volts
Heater to Cathode Capacitance (Max.)	7.0 µµf.
*This rating is applicable where the duty cycle of the voltage	pulse does not

exceed 15% of one television scanning cycle and its duration is limited to 10 micro seconds.

#DC component of heater-cathode voltage should not exceed 450 volts.


TYPICAL OPERATION

	Half-Wave	Full -Wave 2 Tubes
Heater Voltage	6.3	6.3 Volts
Heater Current	1.2	2.4 Amperes
RMS Plate Voltage Per Plate	350	350 Volts
Filter Input Capacitance		20 µf.
Total Minimum Effective Plate Supply Impedance.	145	145 Ohms
DC Output Current	125	250 Ma.
Voltage Regulation (Half Load to Full Load) appro	x 55	40 Volts

APPLICATION

Sylvania Type 6W4GT is a high-vacuum half-wave rectifier, with low voltage drop. It is designed specially for use as a damper diode in television circuits.

damper diode in television circuits. When used for rectifier service the output voltage at any load within the tube rating may be obtained from the curve given below.

Base.	Intermediate Octal 7 Pin
Bulb. Maximum Overall Length.	35//"
Maximum Seated Height	24/
Mounting Position	Any

(Cont'd) 6W6^{GT}

RATINGS

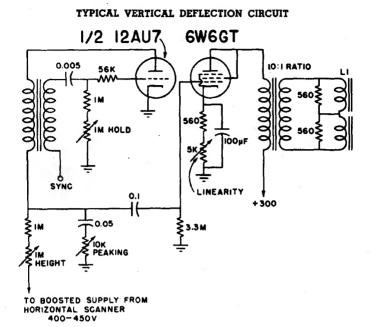
Heater Vo	ltage (AC	or DC).				 	 6.3 Volts
Maximum	Plate Vol	age				 	 300 Volts
Maximum	Screen Su	pply Volt	age			 	 300 Volts
Maximum	Screen Vo	ltage *				 	 150 Volts
Maximum	Plate Diss	ipation				 	 10 Watts
Maximum	Screen Di	ssipation				 	 1.25 Watts
							1000 Volts
Maximum	Grid Bias	Voltage.				 	 -50 Volts
Maximum	Peak Neg	ative-Pul	se Grid	Volt	age*.	 	 -200 Volts
							200 Volts

*Screen voltage may exceed this value providing the screen dissipation is kept within the rating specified by JETEC Standard J5-C4.

*The duration of the pulse should not exceed 15% of one vertical scanning cycle. In a 525 line, interlaced two to one, 30 frame per second television system 15% of one vertical scanning cycle is 2.5 milliseconds.


TYPICAL OPERATION **CLASS A1 AMPLIFIER**

Heater Voltage	6.3 Volts
Heater Current 1.2	1.2 Amperes
Plate Voltage	200 Volts
Screen Grid Voltage 110	125 Volts
Control Grid Voltage	Volta
Cathode Bias Resistor	180 Ohms
Peak AF Grid Signal 7.5	8.5 Volta
Plate Resistance (Approx.)	28,000 Ohms
Mutual Conductance	8000 umhos
Plate Current (Zero Signal) 49	46 Ma.
Plate Current (Maximum Signal) 50	47 Ma.
Screen Current (Zero Signal) 4.0	2.2 Ma.
Screen Current (Maximum Signal)	8.5 Ma.
Load Resistance	5000 Ohms
Total Harmonic Distortion (Approx.)	10 %
Power Output	3.8 Watts
VERTICAL DEFLECTION AMPLIFIER (Triode Co	nnection)
Plate Voltage	300 Volts
Control Grid Voltage (Negative Peaking Component)	
Control Grid Voltage (Sawtooth Peaking Component)	


Control Grid Voltage (Negative Peaking Component)	
Control Grid Voltage (Sawtooth Peaking Component)	65 Volts
Plate Current	
Cathode Bias Resistance	
Maximum Control Grid Circuit Resistance	
Plate Voltage (Pulse Component)	480 Volts
Plate Voltage (Sawtooth Component)	320 Volts
Retrace Time	secondsپ 220

APPLICATION

Sylvania Type 6W6GT is a beam pentode amplifier rated for use as a vertical scanning output amplifier in television sets using Sylvania Type 16TP4 at an anode voltage up to 14,000 volts.

6W6^{GT} (Cont'd)

6W7G Sylvania Type

SHARP CUT-OFF R.F. PENTODE

7**R-0-**8

PHYSICAL SPECIFICATIONS

Base	Octal 7 Pin
Bulb	ST12
Cap Maximum Overall Length	Miniature
Maximum Overall Length	415/22"
Maximum Seated Height	329 32
Mounting Position	Any

Sylvania Type 6W7G is a sharp cut-off pentode similar to type 6J7G but having a 150 ma. heater rating. For data concerning operation, reference should be made to Lock-In type 7C7.

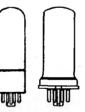
Sylvania Type 6X4

FULL-WAVE RECTIFIER

BaseMiniature Butt	on 7 Pin
Bulb	T-51/2
Maximum Overall Length.	T-51/2 25/8" 23/8"
Maximum Seated Height	23%"
Mounting Position	Anv

RATINGS

Heater Voltage AC or DC	6.3 Volts
Heater Current.	0.6 Ampere
Maximum Peak Inverse Voltage	
Maximum Peak Plate Current.	
Maximum DC Output Current	70 Ma.
Maximum Peak Heater-Cathode Voltage	450 Volts


TYPICAL OPERATION

AC Plate-to-Plate Supply Voltage RMS Filter Input Condenser Total Effective Plate-Supply Impedance per Plate Minimum Filter Input Choke DC Output Current	4 150	Choke Input to Filter 900 Volts ufd. Ohms 8 Henries 70 Ma.
De output currenter		

APPLICATION

Sylvania Type 6X4 is a miniature cathode type full-wave rectifier designed for use in compact sets requiring a rectifier of this rating. Characteristics are the same as for Sylvania Type 6X5GT, to which reference would be made for curve data.

Sylvania Type **6X5**GT

FULL-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

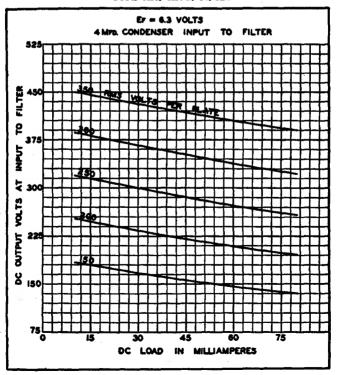
Base. Bulb. Maximum Overall Length Maximum Seated Height Mounting Position	Metal 8-6 3 ¹ 4 ' 2 ¹¹ /6 '	6X5GT Intermediate Octal 6 Pin T9 35% 234 Any
RATINGS		
Heater Voltage AC or DC Heater Current Maximum Peak Inverse Volta Maximum DC Heater-Cathoo Tube Voltage Drop (70 Ma. p Maximum Peak Plate Curren	ige le Voltage er Plate)	0.6 Ampere 1250 Volts 450 Volts 22 Volts

TYPICAL OPERATION CONDENSER INPUT TO FILTER

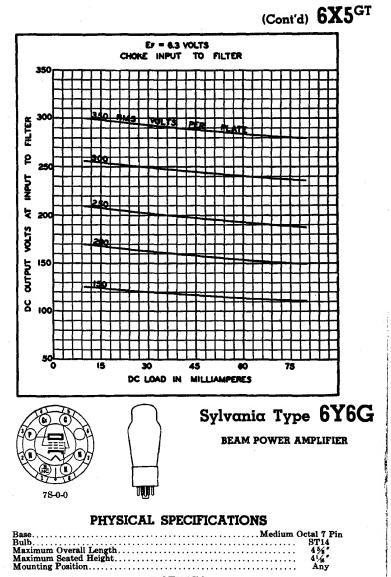
AC Voltage per Plate (RMS)	325 Volts Max.
DC Output Current.	70 Ma. Max.
Piate Supply Impedance (per Plate)*	150 Ohms Min.
*Additional Impedance may be required when a filter of more	than 40 Mfd. is
used.	

6X5^{GT} (Cont'd)

CHOKE INPUT TO FILTER


APPLICATION

Sylvania Type 6X5 and 6X5GT are designed for use as rectifiers for auto-radio receivers or for a-c operated receivers where the demand for rectified current is low. They are similar to the Type 7Y4 except for heater current rating and therefore usable in similar applications.


In order to obtain satisfactory output and regulation, careful consideration should be given to proper filtering. Filter circuits of the condenser-input or the choke-input type are applicable.

The d-c output will be considerably greater with a condenserinput filter than when the other type is used. Also, it will be true that higher peak plate currents will be encountered. The first condenser in the filter circuit, therefore, should not be too large in capacitance. It is not likely that the a-c input voltage will be a pure sine wave form so that the instantaneous peak values may be considerably greater than 1.4 times the r-m-s value. The voltage ratings of the condensers must be such as to handle the maximum peak values encountered.

When used with a vibrator and transformer combination as a source of a.c., considerable care must be taken in the transformer design, as well as the filter design, to avoid exceeding any of the maximum ratings.

TYPE \$X5, \$X5G, \$4/8Z4

RATINGS

Heater Voltage AC or DC	
Heater Current Maximum Plate Voltage	1.25 Ampere 200 Volts
Maximum Screen Voltage	
Maximum Plate Dissipation.	12.5 Watts
Maximum Screen Dissipation Maximum Heater-Cathode Voltage	1.75 Watts
Maximum Heater-Cathode voltage	90 VOITS

TYPICAL OPERATION

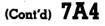
Heater Voltage	6.3	6.3 Volts
Heater Current	1.25	1.25 Ampere
Plate Voltage	135	200 Volts
Screen Voltage	135	135 Volts
Grid Voltage	-18.5	-14.0 Volts
Peak Signal Voltage (A-F)	13.5	14.0 Volts
Plate Current (Zero Signal)	.58	61 Ma.
Plate Current (Maximum Signal)	60	66 Ma.
Screen Current (Zero Signal)	3.5	2.2 Ma.
Screen Current (Maximum Signal)	11.5	9.0 Ma.
Plate Resistance	9300	18300 Ohms
Mutual Conductance	7000	7100 µmhos
Load Resistance	2000	2600 Ohms
Power Output	3.6	6.0 Watts
Total Harmonic Distortion	10	10 Per Cent

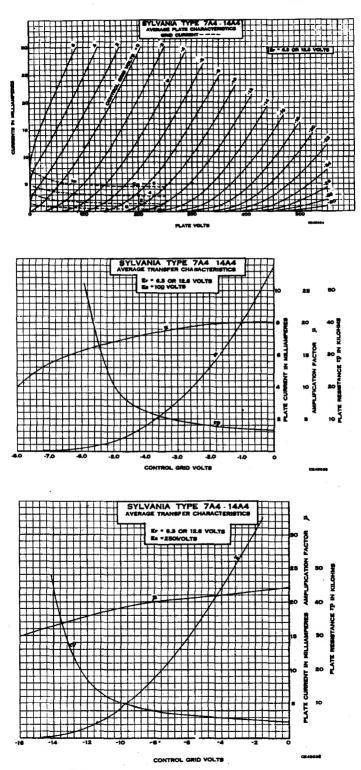
6ZY5G Sylvania Type

FULL-WAVE RECTIFIER

Ŋ	in l	

PHYSICAL SPECIFICATIONS


Bu M M	use. .lb. aximum Overall Length		ST12
	TYPICAL	OPERATION	
He A(M M	eater Voltage eater Current C Plate Supply Voltage (RMS Per P aximum DC Output Current aximum DC Heater-Cathode Voltag ate Supply Impedance Per Plate put Choke	6.3 	Condenser Input 6.3 Volts 0.300 Ampere 325 Volts 40 Ma. 450 Volts 250 Ohms Min. s
	Sylvania Type edium.mu triode		
	PHYSICAL S	Lugur	5AC-L-0
Bi M M	ase. Jb. aximum Överall Length. aximum Seated Height. ounting Position.		T-9 2 ²⁵ /2"
	RA	TINGS	
M M M	eater Voltage (Nominal) AC or DC. aximum Plate Voltage. aximum Plate Dissipation inimum External Grid Bias Voltage aximum Heater-Cathode Voltage.		300 Volts 2.5 Watts 0 Volt
D	irect Interelectrode Capacitances:	*	
	Grid to Plate Grid to Cathode *With 1% " diameter shield (RMA S		3.4 µµf.
	TYPICAL	OPERATION	
		A AMPLIFIER	
H Pl G	eater Voltage eater Current ate Voltage rid Voltage		6.3 Volts 300 Ma. 250 Volts -8 Volts 900 Ohms


Flate Voltage	30	200 10103
Grid Voltage	0	–8 Volts
Self-Bias Resistor	0	900 Ohms
Plate Current	10	9 Ma.
Plate Resistance (Approximate)	6700	7700 Ohms
Mutual Conductance	3000	2600 µmhos
Amplification Factor	20	20

APPLICATION

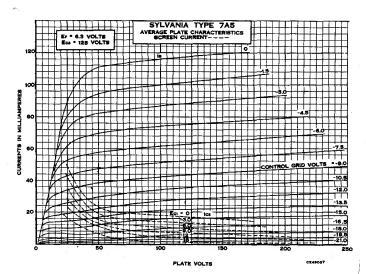
Sylvania Type 7A4 is a medium-mu triode designed for use as an oscillator, detector or amplifier. It is quite similar to types 6J5GT but gives improved performance especially at the higher frequencies, due to the lock-in type of construction. This construction results in shorter leads, lower capacitances, and lower base losses. This tube may be used successfully to about 225 mc. as an oscillator. For higher frequencies, types 7E5/1201 or 7E8 should be considered 7E5/1201 or 7F8 should be considered. Tabulated data for resistance coupled operation will be

found in the appendix.

7A5 Sylvania Type

BEAM POWER AMPLIFIER

l	0	
	ullu .	


PHYSICAL SPECIFICATIONS

Base		Lock-In 8 Pin
Buib		Т-9
Maximum Overall Length		
Maximum Seated Height		
Mounting Position		Any
RATINGS		
Heater Voltage AC or DC (Nominal)		7.0 Volts
Maximum Plate Voltage,		125 Volts
Maximum Screen Voltage	•••••	125 Volts
Maximum Plate Dissipation		5.5 Watts
Maximum Screen Dissipation		1.2 Watts
Maximum Heater-Cathode Voltage		90 Volta
Maximum meater-Cathoue voltage	••••	
TYPICAL OPERATION	ON	
Heater Voltage	6.3	6.3 Volts
Heater Current	0.75	0.75 Ampere
Plate Voltage	110	125 Volts
Screen Voltage	110	125 Volta
Grid Voltage	-7.5	Volts**
Self-Bias Resistor	175	190 Ohms
Plate Current (Zero Signal)	40.0	44.0 Ma.
Plate Current (Maximum Signal)	41.0	45.0 Ma.
Screen Current (Zero Signal)	8.0	3.3 Ma.
Screen Current (Maximum Signal)	7.0	9.5 Ma.
Mutual Conductance	5800	6000 µmhos
Plate Resistance	16000	17000 Ohms
Load Resistance	2500	2700 Ohms
Power Output	1.5	2.2 Watt
Power Output Total Harmonic Distortion	10 -	10 Per Cent
**Obtained by self-bias resistor. Fixed bias opera	tion at 1	

**Obtained by self-bias resistor. Fixed bias operation at maximum ratings is not recommended.

APPLICATION

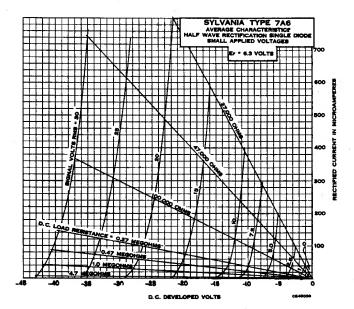
Sylvania Type 7A5 is a Lock-In type beam power amplifier designed to operate at plate voltages of about 110 volts. Except for heater ratings, it is similar to type 35A5. The curve data given for type 35A5 is applicable for the 110 volt condition. Grid circuit resistance should not exceed 0.1 megohm for fixed bias operation or 0.5 megohm for self-bias operation.

Sylvania Type 7A6

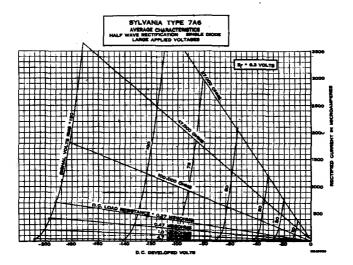
DUODIODE

PHYSICAL SPECIFICATIONS

Base	. Lock-In 8 Pin
Bulb	T-9
Maximum Overall Length	225.4"
Maximum Seated Height	21/
Mounting Position	Any
RATINGS	
Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum RMS Plate Voltage	150 Volts
Maximum Heater-Cathode Voltage	330 Volts
Maximum Peak Current Per Plate	45 Ma.
Maximum DC Output Current Per Plate	8.0 Ma.
Average Voltage Drop Per Plate at 16 Ma	11.0 Volts
Direct Interelectrode Capacitances:*	
Plate 1 to Cathode 1 (pins 6 and 7)	2.0 µµf.
Plate 2 to Cathode 2 (pins 2 and 3)	2.6 µµ1.
Plate 1 to Plate 2 (pins 3 and 6)	0.1 μμf. Max.


Plate 1 to Plate 2 (pins 3 and 6). *With 1¹/₆ diameter shield (RMA Std. 308) connected to cathode

TYPICAL OPERATION


Heater Voltage	6.3 Volts
Heater Current	150 Ma.
AC Voltage per Plate (RMS)	150 Volts
DC Output Current	8.0 Ma.
	0.0

APPLICATION

Sylvania Type 7A6 is a Lock-In type duodiode. It has separ-ate cathodes and is similar to Type 6H6GT. The shielding between diode units permits each section to be used inde-pendently of the other and the lock-in construction gives good high-frequency characteristics. Type 7C4, however, should be considered for extremely high-frequency applications.

7A6 (Cont'd)

7A7 Sylvania Type REMOTE CUT-OFF RF PENTODE

8V-L-5

PHYSICAL SPECIFICATIONS

Base Bulb. Maximum Overall Length. Maximum Seated Height. Mounting Position.		
RATINGS		
Heater Voltage (Nominal) AC or DC Maximum Plate Voltage Maximum Screen Voltage Maximum Screen Dissipation Minimum External Grid Bias Voltage Maximum Heater-Cathode Voltage	•••••	7.0 Volts 800 Volts 125 Volts 4.0 Watts 0.4 Watt 0 Volt 90 Volts
Direct Interelectrode Capacitances:* Grid to Plate Input; Grid to $(F+K+G_2+G_3)$ Output; Plate to $(F+K+G_2+G_3)$ *With 1½ diameter shield (RMA Std. 308) conn.		5.5 μμ f. 7.0 μμf.
TYPICAL OPERAT	ION	
Heater Voltage. Heater Current. Plate Voltage Screen Voltage. Self-Bias Resistor. Suppressor. Plate Current. Screen Current. Plate Resistance. Mutual Conductance of 10 µmhos	6.3 300 100 100 -1.0 60 50 50 13.0 4.0 0.12 2350 -35	6.3 Volts 300 Ma. 250 Volts 100 Volts -3 Volts 260 Ohms thode 9.2 Ma. 2.6 Ma. 0.8 Megohm 2000 µmhos -35 Volta

SYLVANIA RADIO TUBES

Sylvania Type **7Å8**

OCTODE CONVERTER

PHYSICAL SPECIFICATIONS

् णुग

Base	
Bulb	
Maximum Overall Length	225/22
Maximum Seated Height	21/4
Mounting Position	Any
RATINGS	
Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage	300 Volts
Maximum Screen Supply Voltage	300 Volts
Maximum Screen Voltage	100 Volts
Maximum Oscillator Anode Supply	300 Volts
Maximum Oscillator Anode Voltage	200 Volts
Maximum Plate Dissipation	1.0 Watt
Maximum Screen Dissipation	0.3 Watt
Maximum Oscillator Anode Dissipation	0.75 Watt
Maximum Cathode Current	13.0 Ma.
Minimum Signal Grid Voltage	0 Volt
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Grid G to Plate	0.15 μμf. Max.
Grid G to Grid Ga	0.3 μμf. Max.
Grid G to Grid Go	0.15 µµf. Max.
Grid Go to Grid Ga	0.60 µµf.
Grid G to all Electrodes (r-f Input)	7.5 μμί.
Grid Ga to all Electrodes except Go (Osc. Output)	3.4 $\mu\mu$ f.
Grid Go to all Electrodes except Ga (Osc. Input)	3.8 µµ1.
Plate to all Electrodes (Mixer Output)	9.0 µµ1.
*With 15% diameter shield (RMA Std. 308) connected to cathe	ode.
TYPICAL OPERATION	

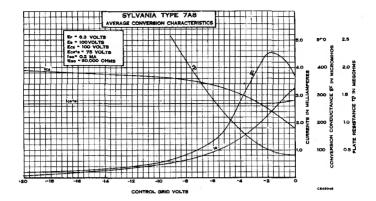
Heater Voltage	6.3	6.3 Volts
Heater Current	150	150 Ma.
Plate Voltage	100	250 Volts
Control Grid (G) Voltage	-3.0	-3.0 Volts
Screen (Gs, Voltage	75	100 Volts
Anode Grid (Ga) Voltage	100	250 Volts**
Oscillator Grid Resistor (Go)	50000	50000 Ohms
Plate Current	1.8	3.0 Ma.
Screen Grid Current	2.7	3.2 Ma.
Anode Grid Current	2.8	4.2 Ma.
Oscillator Grid Current	0.2	0.4 Ma.
Self-Bias Resistor	400	280 Ohms
Plate Resistance	50000	700000 Ohms
Conversion Conductance	375	550 µmhos
Control Grid Voltage for 2 µmhos Conv. Cond	-22.5	-30 Volts
**Applied through 20.000 ohm dropping resistor.		

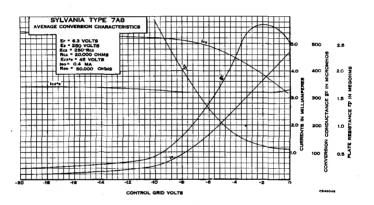
OSCILLATOR CHARACTERISTICS NON-OSCILLATING CONDITION

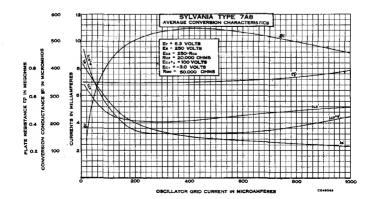
 Anode Grid Current (Ga).
 10 Ma.

 Mutual Conductance (Ga to Go).
 1600 μmhos

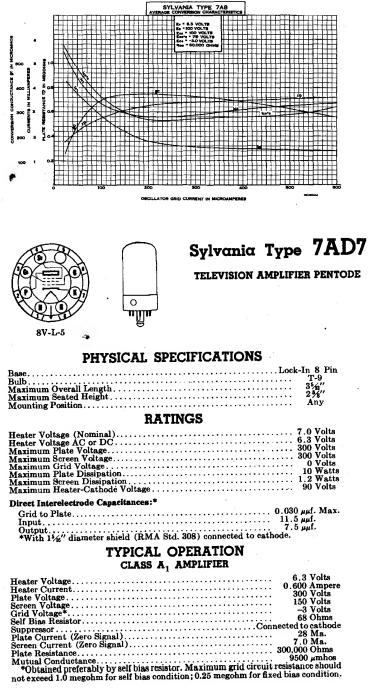
 Amplification Factor (Ga to Go).
 65


 Mutual Conductance (Ga to Go).
 65


Measurements taken with a plate voltage of 250 volts, anode grid voltage of 180 volts, screen voltage of 100 volts, with oscillator grid at 0.0 volt.


APPLICATION

Sylvania Type 7A8 is a single-ended oscillator-mixer tube of lock-in design for service in AC, AC-DC and auto receivers. Compact size, short leads and good shielding are some of the features of this tube. Application and operation are similar to the older types of oscillator-mixer tubes. The addition of a suppressor grid in Type 7A8 serves to increase the plate resistance for improved performance, particularly when operated at low plate supply voltages.


7A8 (Cont'd)

(Cont'd) 7A8

7AD7 (Cont'd)

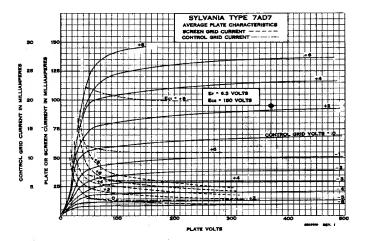
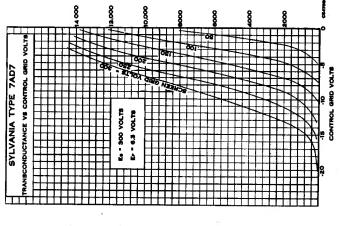
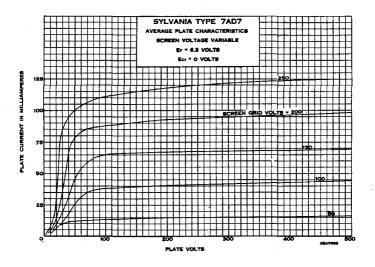

CLASS A1 TELEVISION AMPLIFIER

Plate Supply Voltage. Screen Voltage. Self Bias Resistor. Signal Voltage (Peak to Peak). Suppressor. Plate Current (Zero Signal). Screen Current (Zero Signal).	25.0 Ma. 6.0 Ma.
Maximum Signal Voltage Output (Peak to Peak)	135 Volts


APPLICATION

Sylvania Type 7AD7 is a high transconductance pentode amplifier designed for voltage amplification of a broad band of frequencies such as required for television service.


This is the first Lock-In tube having characteristics suitable for this purpose. It is, however, very similar to Type 6AG7 which, although having slightly higher theoretical gain, does not have the ruggedness, low capacitance, and high production advantages of the Lock-In construction.

RANSCONDUCTANCE IN MICROWHOS

(Cont'd) 7AD7

Sylvania Type 7AF7

DOUBLE TRIODE AMPLIFIER

PHYSICAL SPECIFICATIONS

Base Lock-In Bulb T Maximum Overall Length 2 ²⁵ Maximum Seated Height 2 ¹ Mounting Position Ai	-9
RATINGS	
Heater Voltage AC or DC (Nominal)	as ts
Direct Interelectrode Capacitances:*	
Grid to Plate (Per Section) 2.3 µµf. Input (Per Section) 2.2 µf. Output (Per Section) 1.6 µµf. Grid 1 to Grid 2 0.20 µµf. Plate 1 to Plate 2 0.60 µµf. Grid 1 to Plate 2 0.06 µµf. Grid 2 to Plate 1 0.10 µµf.	Max. Max. Max.
TYPICAL OPERATION	

TYPICAL OPERATION

CLASS A1

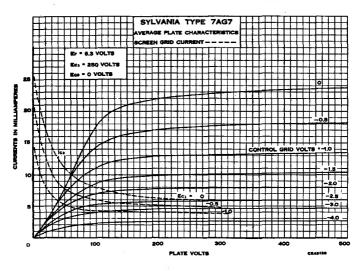
PER SECTION EXC	141	UPUTEU	
Heater Voltage (AC or DC)	6.3	6.3	6.3 Volts
Heater Current	800		300 Ma.
Plate Voltage	100		250 Volts
Grid Voltage	0	3	-10 Volts
Self-Bias Resistor		600	1100
Plate Current	10.8	5.0	9.0 Ma.
Mutual Conductance	2600	1900	2100 µmhos
Amplification Factor	17	' 16	16
Plate Resistance	6500	8400	7600 Ohms

7AG7 Sylvania Type

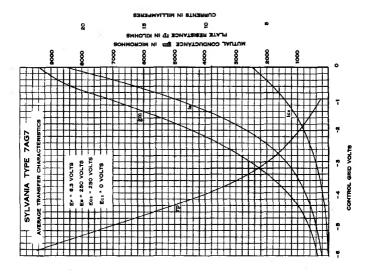
SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base1 Bulb Maximum Overall Length. Maximum Seated Height. Mounting Position.	T-9 2 ²⁵ /2" 2 ¹ /4"
RATINGS	
Maximum Plate Voltage. Maximum Screen Voltage. Maximum Plate Dissipation. Maximum Screen Dissipation	7.0 Volts 300 Volts 300 Volts 2.0 Watts .75 Watt 1.0 Volt 90 Volts
Input	005 μμf. Max. 7.0 μμf. 6.0 μμf.


TYPICAL OPERATION

Heater Voltage	6.3	6.3 Volts
Heater Current	150	150 Ma.
Plate Voltage		250 Volta
Screen Voltage		
SuppressorConn		
Control Grid Bias	-1.0	* Volta
Self-Bias Resistor		250 Ohms
Plate Current.		6.0 Ma.
Screen Current	0.5	2.0 Ma.
Mutual Conductance	2600	4200 µmhos
Plate Resistance		>1.0 Megohm
Control Grid Voltage for 10 µa. Plate Current		-10.0 Volts
*Bias voltage developed is approximately 2.0 volts.	Fixed	bias operation is


*Bias voltage developed is approximately 2.0 volts. Fixed bias operation is not recommended.

APPLICATION

Sylvania Type 7AG7 is a high efficiency, sharp cut-off pentode designed for either AC or AC-DC service. The high screen voltage rating permits a design which has high input impedance. For this reason, higher gains may be obtained in the television and frequency modulation bands than with other tubes having somewhat higher mutual conductance.

(Cont'd) 7AG7

Sylvania Type 7AH7

SEMI-REMOTE CUT-OFF RF PENTODE AMPLIFIER

8V-L-5

PHYSICAL SPECIFICATIONS

BaseLocl	-In 8 Pin T-9
Bulb Maximum Overall Length	
Maximum Seated Height.	21/11
Mounting Position	2 ²⁵ /2'' 21/1'' Any
RATINGS	
Heater Voltage (Nominal) AC or DC	7.0 Volts
Maximum Plate Voltage	JUU VOIGS
Maximum Screen Voltage	300 YOKS
Maximum Plate Dissipation	2.U Watts
Maximum Screen Dissipation	0.7 Watt
Minimum External Negative Control Grid Voltage	1.0 Volt
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate	.005 μμf.
Input	7.0 μμf.
Output	6.5 µµf.
*With 15/16" diameter shield (RMA Std. 308) connected to cathode.	
TYPICAL OPERATION	

CLASS A, AMPLIFIER

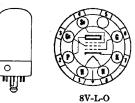
	*	
Heater Voltage		6.3 Volts
Heater Current		150 Ma.
Plate Voltage		250 V OITS
Screen Voltage		200 V 0168
Suppressor		ode at Socket
Grid Voltage**	Obtained by 250 ohms sel	I-DIAS TESISTOF
Plate Current		6.8 Ma.
Screen Current		1.9 Ma.
Mutual Conductance		3300 µmhos
Plate Resistance		1.0 Megohm
Grid Voltage for Mutual		
Conductance of 35 µmhos	-20 Ve	olts (Approx.)
Conductance of bo minios	0 hut fred bing is not room	bebremm
**Bias voltage is approximately	2.0 VOIUS DUU HXCH DISS IS NOT FEEL	mmenueu.

7AJ7 Sylvania Type

SHARP CUT-OFF PENTODE

ъ

8V-L-5


PHYSICAL SPECIFICATIONS

	. Lock-In 8 Pin
Bulb Maximum Overall Length	···· T-9
Maximum Seated Height	$2^{25}_{20}''$ $2^{1}_{4}''$
Mounting Position	Anv
	mily
RATINGS	
Heater, Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage	300 Volts
Maximum Screen Voltage	100 Volts
Maximum Screen Supply Voltage	300 Volts
Maximum Plate Dissipation	
Maximum Screen Dissipation Minimum External Grid Bias	
Maximum Heater-Cathode Voltage	90 Volts
_	90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate	.007 µµf. Max.
Input	6.0 µµf.
Output. *With 15%" diameter shield (RMA Std. 308) connected to cathe	6.5 μμf.
with 1/16 diameter americ (10011 bod. 505) connected to cath	ode.
	ode.
	ode.
TYPICAL OPERATION CLASS A ₁ AMPLIFIER	
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3	6.3 Volts
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3 Heater Current. 300	
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3 Heater Current. 300 Plate Voltage 100 Screen Voltage 100	6.3 Volts 300 Ma. 250 Volts 100 Volts
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3 Heater Current. 300 Plate Voltage. 100 Screen Voltage. 100 Control Grid Voltage. -1.0	6.3 Volts 300 Ma. 250 Volts 100 Volts -3.0 Volts
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3 Heater Current. 300 Plate Voltage. 100 Screen Voltage. 100 Control Grid Voltage. 100 Self Bins Resistor. 130	6.3 Volts 300 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3 Heater Current. 300 Plate Voltage 100 Screen Voltage. 100 Control Grid Voltage. -1.0 Suppressor Grid and Pin No. 5. Connect	6.3 Volts 300 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms ted to Cathode
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3 Heater Current. 300 Plate Voltage. 100 Screen Voltage. 100 Control Grid Voltage. 100 Self Bias Resistor. 130 Suppressor Grid and Pin No. 5. Connec Plate Voltage. 5.7	6.3 Volts 300 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms ted to Cathode 2.2 Ma.
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3 Heater Current. 300 Plate Voltage 100 Screen Voltage 100 Control Grid Voltage. 100 Suppressor Grid and Pin No. 5 Connec Plate Current. 5.7 Screen Current. 1.8	6.3 Volts 300 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms ted to Cathode 2.2 Ma. 0.7 Ma.
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3 Heater Current. 300 Plate Voltage 100 Screen Voltage 100 Suppressor Grid and Pin No. 5 Connec Plate Current. 5.7 Screen Current. 1.8 Plate Resistance (Approx.) 400	6.3 Volts 300 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms ted to Cathode 2.2 Ma. 0.7 Ma. 1.0 Megohm
TYPICAL OPERATION CLASS A1 AMPLIFIER Heater Voltage AC or DC. 6.3 Heater Current. 300 Plate Voltage 100 Screen Voltage 100 Control Grid Voltage. 100 Suppressor Grid and Pin No. 5 Connec Plate Current. 5.7 Screen Current. 1.8	6.3 Volts 300 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms ted to Cathode 2.2 Ma. 0.7 Ma.

Data for use in Resistance Coupled Amplifiers may be obtained by referring to type 7C7 in the appendix.

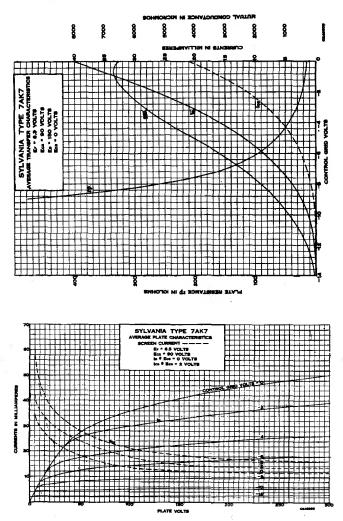
7AK7 Sylvania Type

PENTODE WITH SUPPRESSOR CONTROL

PHYSICAL SPECIFICATIONS

Base. Lock-In 8 Pin Bulb. T-9 Maximum Overall Length. 3½″ Maximum Seated Height. 2½″ Mounting Position. Any
RATINGS
Heater Voltage (Nominal) AC or DC. 7.0 Volts Maximum Plate Voltage. 200 Volts Maximum Screen Voltage. 100 Volts Maximum Plate Dissipation. 8.5 Watts Maximum Heater-Cathode Voltage. 90 Volts
Direct Interelectrode Capacitances:* 0.7 μμf. Control Grid to Plate 12.0 μμf. Control Grid Input 12.0 μμf. Output 9.5 μμf. Suppressor Grid to Plate 4.0 μμf. *With 15/6" diameter shield (RMA Std. 308) connected to cathode

(Cont'd) 7AK7


TYPICAL OPERATION

Heater Voltage	6.3	6.3	6.3 Volts
Heater Current		0.8	0.8 Ampere
Plate Voltage	150	150	150 Volts
Screen Voltage	90	90	90 Volts
Control Grid Voltage	0	11	0 Volts
Suppressor Grid Voltage			-9.5 Volts
Mutual Conductance	5500		$\dots \mu mhos$
Plate Resistance (Approx.)	11.500		Ohms
Plate Current.	40		. 2.0 Max. Ma.
Screen Current	21	0.45	43 Max. Ma.

APPLICATION

Sylvania Type 7AK7 is a sharp cut-off amplifier pentode of lock-in construction designed and rated for use with an addi-tional control voltage on the suppressor. For use as a "gating" tube the watts dissipation rating of the screen may approxi-mate 4.0 watts momentarily, providing the dissipation aver-aged over any one second interval does not exceed the rating. Since normal use of this tube will require fixed bias opera-tion, the maximum grid circuit resistance should not exceed 1

tion, the maximum grid circuit resistance should not exceed .1 megohm.

7B4 Sylvania Type

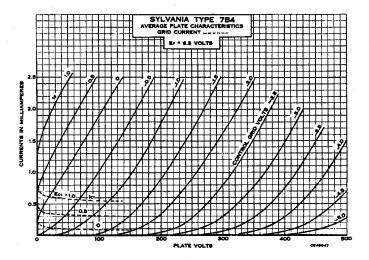
HIGH-MU TRIODE

PHYSICAL SPECIFICATIONS

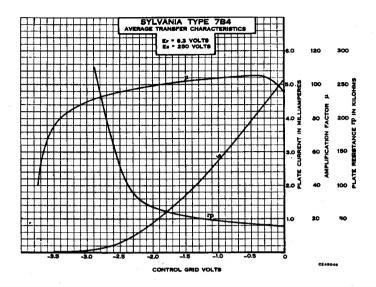
Base	Lock-In 8 Pin	
Maximum Overall Length. Maximum Seated Height. Mounting Position.	2 ¹ /2	
Mounting Position	Any	
RATINGS		

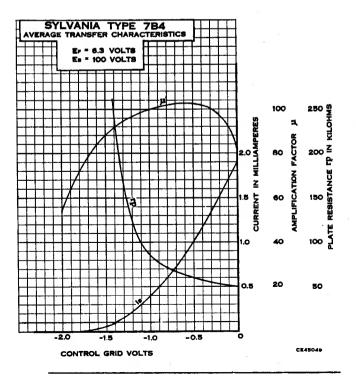
Heater Voltage (Nominal) AC or DC	7.0 Volts
Waximum Plate Voltage	900 17.14.
Maximum Heater-Cathode Voltage.	90 Volts

TYPICAL OPERATION CLASS A1 AMPLIFIER


Heater Voltage	6.3	6.3 Volts
neater Current	300	300 Ma.
riate voltage	100	250 Volts
Grid Voltage	-1	-2 Volts
riace ourrent.	04	0.9 Ma.
Plate Resistance (Approximate)	85000	66000 Ohms
Mutual Conductance (Approximate)	1150	1500 μ mhos
Amplification Factor	100	100

APPLICATION


Sylvania Type 7B4 is a single-ended high-mu triode having electrical characteristics and applications similar to those for Type 6F5G. The lock-in construction employed in Type 7B4 provides


The lock-in construction employed in Type 7B4 provides compactness, suitable shielding, and the lock-in feature. For a-c service the 7-volt heater rating corresponds to a 130-volt line condition. It is also the nominal voltage for automotive receiver service. For household receivers, ratings marked Max. are design centers for a line voltage of 117 volts. For auto-motive service the design centers are 90% of the values indi-cated using a battery terminal voltage of 6.6 volts. For data on resistance counting circuits refer to table in

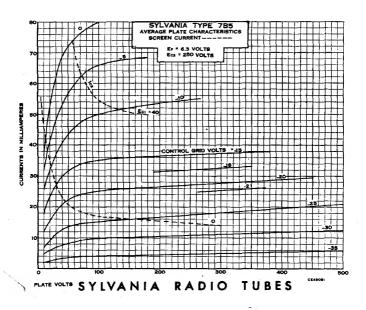
For data on resistance coupling circuits, refer to table in appendix.

(Cont'd) 7B4

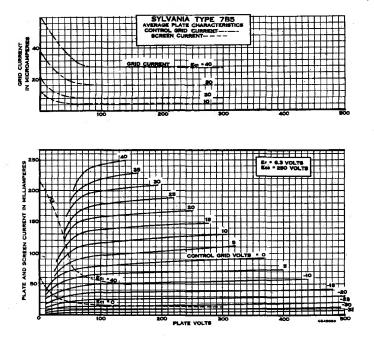
7B5 Sylvania Type

POWER OUTPUT PENTODE

Look In 9 Din


PHYSICAL SPECIFICATIONS

Base	
Bulb	T-9
Maximum Overall Length	35.45"
Maximum Seated Height	
Mounting Position	
RATINGS	
Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage	315 Volts
Maximum Screen Voltage	285 Volts
Maximum Plate Dissipation	8.5 Watts
Maximum Screen Dissipation	2.8 Watts
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate	0.8 µµf.
Input	7.4 µµl.
*With 15/4" diameter shield (RMA Std. 308) connected to cathod	le.
TYPICAL OPERATION	
SINGLE-TUBE CLASS A1 AMPLIFIER	


Heater Voltage	6.3	6.3	6.3 Volts
Heater Current	400	400	400 Ma.
Plate Voltage	100	250	815 Volts
Screen Voltage	100	250	250 Volts
Grid Voltage§	-7.0	-18	-21 Volts
Self-Bias Resistor	650	500	700 Ohms
Peak Signal Voltage		18	21 Volts
Plate Current (Zero Signal)		32.0	25.5 Ma.
Plate Current (Maximum Signal)		33.0	28.0 Ma.
Screen Current (Zero Signal)		5.5	4.0 Ma.
Screen Current (Maximum Signal)	3.0	10.0	9.0 Ma.
Plate Resistance (Approximate)	104000	68000	75000 Ohms
Mutual Conductance		2300	2100 µmhos
Load Resistance		7600	9000 Ohms
Power Output	0.35		4.5 Watts
Total Harmonic Distortion		11	15 Per Cent
The DC resistance in the grid circuit should not exceed 0.5 Meg.			

APPLICATION

Sylvania Type 7B5 is a power output pentode of lock-in design. It is suitable for use in automobile and A-C operated receivers with the lock-in design providing ruggedness and compact size.

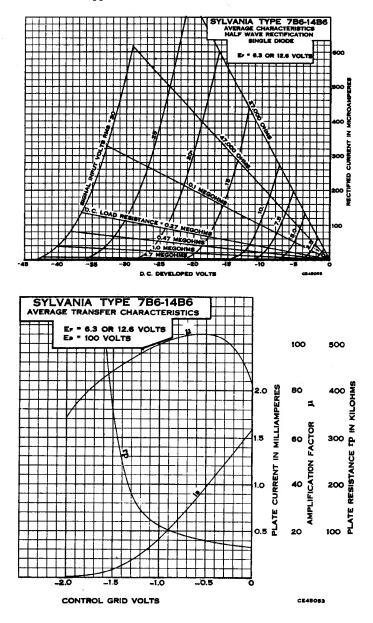
(Cont'd) 7B5

7B6 Sylvania Type

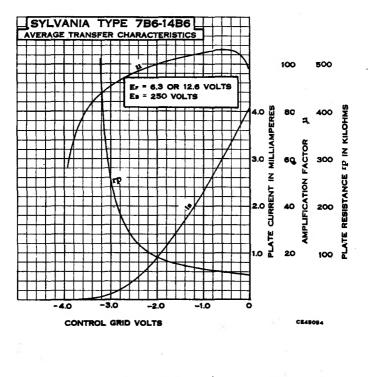
DUODIODE HIGH-MU TRIODE

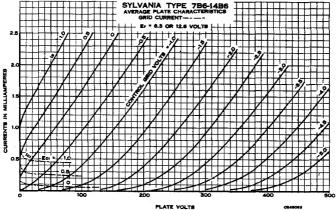
PHYSICAL SPECIFICATIONS

Base Bulb		T 9
Maximum Overall Length Maximum Seated Height		225/2 21/4
Mounting Position	• • • •	Any
RATINGS		
Heater Voltage AC or DC (Nominal)		Volts
Maximum Plate Voltage		Volts
Maximum Heater-Cathode Voltage.		Volts Volts
Maximum Diode Drop at 0.8 Ma Maximum Diode Current per Plate (Continuous)		Ma.
Direct Interelectrode Capacitances:*		
Grid to Plate	1.6	μµf.
Input		μµf.
Output		μµΐ.
Grid to Diode 1	0.01	
Grid to Diode 2 *With 15/4" diameter shield (RMA Std. 308) connected to cath	0.04	μμι.
	Jue.	
TYPICAL OPERATION		
Heater Voltage		Volts
Heater Current		Ampere
Plate Voltage		Volts
Grid Voltage		Volts Ma.
		Ohms
Mutual Conductance		µmhos
Amplification Factor	100	


SYLVANIA RADIO TUBES

APPLICATION


Sylvania Type 7B6 is a duodiode high-mu triode suitable for detector audio amplifier service in AC or auto receivers. For AC-DC receivers, the Types 7C6 or 14B6, having lower heater current ratings, should prove more satisfactory.


The diodes are independent of each other and of the triode unit except that the cathode structure is common to all. Type 7K7 or 7X7 should be considered if it is necessary to have more complete separation between the various sections.

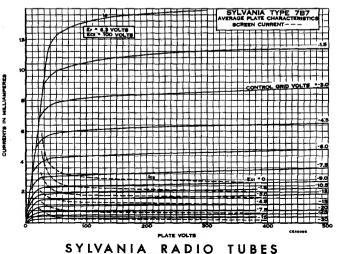
Resistance coupled amplifier data will be found in the table in the appendix.

(Cont'd) 7B6

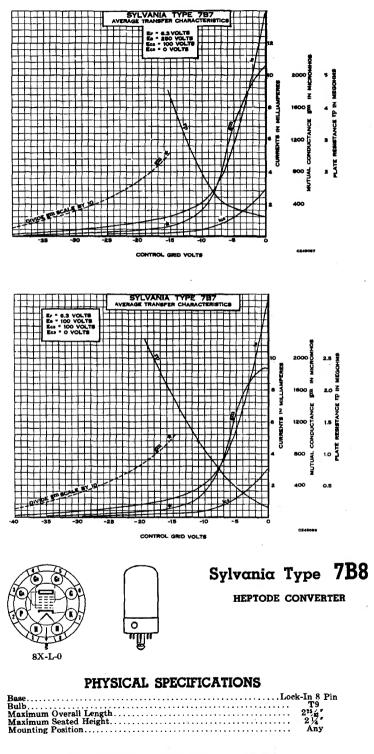
7**B**7 Sylvania Type

REMOTE CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS


Вазе	Lock-In 8 Pin
Bulb	TQ
Maximum Overall Length	225 4
Maximum Seated Height.	21/
Mounting Position	Any
RATINGS	
Heater Voltage (Nominal) AC or DC	
Maximum Plate Voltage.	300 Volts
Maximum Screen Voltage	
Maximum Plate Dissipation	2.25 Watta
Maximum Screen Dissipation	0.25 Watt
Minimum External Caid Dies Values	U.25 WATT
Minimum External Grid Bias Voltage	0 Volt
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate	0.004 µµf. Max.
Input: Grid to $(\mathbf{F} + \mathbf{K} + \mathbf{Gs} + \mathbf{Su})$	5 0 muf
Output: Plate to $(F + K + Gs + Su)$	6.0 µµf.
*With 15% diameter shield (RMA Std. 308) connected	to methodo
TYPICAL OPERATION	
Heater Voltage	6.3 Volts
Heater Current	
Plate Voltage	
Screen Voltage	
Grid Voltage	
Self-Bias Resistor	
SuppressorConne	
Plate Current	
Screen Current 1.8	
Plate Resistance 0.3	
Mutual Conductance 1675	
Grid Voltage for Mutual Conductance of 10 µmhos -40	-40 Volts

APPLICATION Sylvania Type 7B7 is a single-ended triple grid remote cut-off amplifier of lock-in design suitable for r-f or i-f service in a-c, ac-dc and auto receivers.


All of the grids terminate a base pins, thus providing an r-f amplifier tube without a top cap. An internal cage-like shield connected to pin Number 5 is used to obtain a small grid

to plate capacity. The electrical characteristics and applications of Type 7B7 are very similar to those for Type 7A7. Reference may be made to this type for application notes. For a-c service the 7-volt heater rating corresponds to a

130-volt line condition.

(Cont'd) 7B7

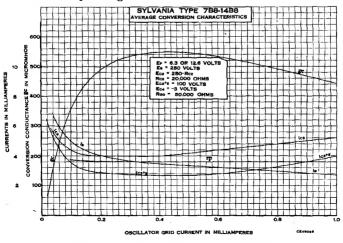
7B8 (Cont'd)

RATINGS

Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage	300 Volts
Maximum Screen Voltage	100 Volta
Maximum Screen Supply	300 Volts
Maximum Anode Grid Voltage	200 Volts
Maximum Anode Grid Supply.	300 Volts
Maximum Plate Dissipation	1.0 Watt
Maximum Screen Dissipation	0.3 Watt
Maximum Anode Grid Dissipation	0.75 Watt
Maximum Cathode Current	14 Ma.
Minimum Signal Grid Bias	0 Volt
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Grid G to Plate	0.2 µµf. Max.
Grid G to Grid Ga.	0.3 µµf. Max.
Grid G to Grid Go	0.2 uuf. Max.
Grid Go to Grid Ga	0.9 µµf.
Grid G to all Electrodes (R-F Input)	10.0 µµf.
Grid Ga to all Electrodes except Go (Osc. Output)	3.4 µµf.
Grid Go to all Electrodes except Ga (Osc. Input)	5.0 µµf.
Plate to all Electrodes (Mixer Output)	9.0 µµf.
*With 15/ diamator shield (PMA Std 909) connected to eath	. J .

With 15% diameter shield (RMA Std. 308) connected to cathode.

TYPICAL OPERATION

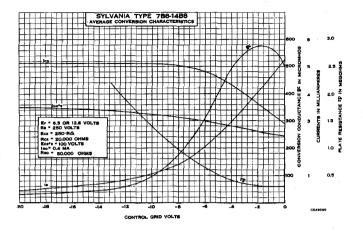

Heater Voltage. Heater Current. Plate Voltage. Screen Voltage. Control Grid Voltage. Oscillator Grid (G) Voltage. Plate. Current. Screen Grid Current. Anode Grid Current. Oscillator Grid Current. Self-Bias Resistor. Plate Resistance.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.3 Volts 300 Ma. 250 Volts 100 Volts 250** Volts -3.0 Volts 50000 Ohms 3.5 Ma. 2.7 Ma. 4.0 Ma. 0.4 Ma. 300 Ohms 0.36 Mescohm
Plate Resistance Conversion Conductance Control Grid Voltage (Approximate)		0.36 Megohm 550 µmhos
For 6 µmhos Conversion Conductance For 3 µmhos Conversion Conductance **Applied through 20,000 ohm droppir		-35 Volts

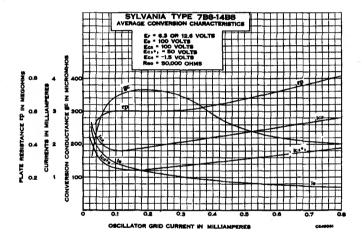
The oscillator section, not oscillating, has a Gm of $1150 \,\mu$ mhos, a mu of 75 at an anode grid current of 4.0 ma. when Ep = 250 Volts; Ega = 100 Volts; Egs = 55 Volts; Eg = 2.0 Volts and Ego = -1.0 Volt.

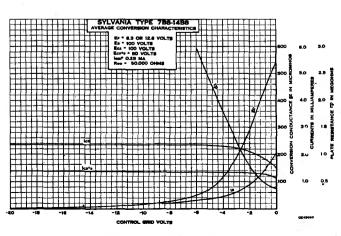
APPLICATION

Sylvania Type 7B8 is a lock-in converter tube designed for use in AC or auto receivers. For AC-DC service, Type 14B8 with lower heater current rating will usually prove more satisfactory.

Electrically, Type 7B8 is similar to the older oscillator mixer tubes. Conventional circuits and design are readily adaptable for use with this compact rugged tube. As is usual with converter tubes, it is well to ascertain that the maximum cathode current does not exceed the rated limit under any encountered operating condition.

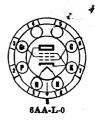



RADIO


TUBES

SYLVANIA

(Cont'd) 7B8



BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base	. Lock-In 8 Pin
Bulb. Maximum Overall Length	314"
Maximum Seated Height	25%" Anv
MOUNCIAN FORMUON	Any
RATINGS	
Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage	315 Volts
Maximum Screen Voltage	285 Volts
Maximum Plate Dissipation.	12 Watts
Maximum Screen Dissipation	2 Watts
Maximum Heater-Cathode Voltage.	90 Volts
Direct Interelectrode Capacitances:*	

Grid to Plate	0.4 µµf.
Input.	9.5 µµf.
Output	9.0 µµf.
*With 144" diameter shield (RMA Std. 308) connected to catho	

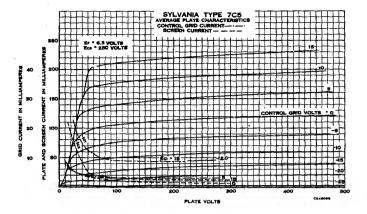
TYPICAL OPERATION CLASS A1 AMPLIFIER (ONE TUBE)

Heater Voltage	6.3	6.3	6.3 Volts
Heater Current	450	450	450 Ma.
Plate Voltage	180	250	315 Volts
Screen Voltage.	180	250	225 Volts
Grid Voltage	-8.5	-12.5	-13.0 Volts
Self-Bias Resistor	260	250	360 Ohms
Peak Input Signal	8.5	12.5	13.0 Volts
Plate Current (Zero Signal)	29	45	34 Ma.
Plate Current (Maximum Signal)	30	47	35 Ma.
Screen Current (Zero Signal)	3.0	4.5	2.2 Ma.
Screen Current (Maximum Signal)	4.0	7.0	6.0 Ma.
Plate Resistance	58000	52000	77000 Ohms
Mutual Conductance	3700	4100	3750 µmhos
Load Resistance	5500	5000	8500 Ohms
Power Output	. 2.0	4.5	5.5 Watts
Total Harmonic Distortion	8	8	12 Per Cent

CLASS AB1 AMPLIFIER (PUSH-PULL)

(Values are for two tubes)

Heater Voltage.	6.3	6.3 Volts
Heater Current.	.90	.90 Ampere
Plate Voltage.	250	285 Volts
Screen Voltage.	250	285 Volts
Grid Voltage.	-15	-19 Volts
Self-Bias Resistor.	200	260 Ohms
Heater Current . Plate Voltage . Screen Voltage .	250 250 -15 200 30 70 79 5 13 60000 3750 10000	285 Volts 285 Volts -19 Volts


APPLICATION

Sylvania Type 7C5 is a beam power amplifier which provides high power output, power sensitivity, and efficiency with a low percentage of third and higher order harmonics. The electrical characteristics and applications are identical with those for Types 6V6 and 6V6G. The Type 7C5 should prove very desirable in applications where heater and plate current drain must be maintained at a minimum.

The lock-in construction provides compactness, suitable shielding and the special lock-in feature. For a-c service the 7-volt heater rating corresponds to a 130-volt line condition.

When fixed bias is employed the resistance in the grid circuit should not be greater than 0.1 megohm. With cathode bias the grid circuit resistance must not exceed 0.5 megohm.

(Cont'd) 7C5

Beer

Sylvania Type 7C6

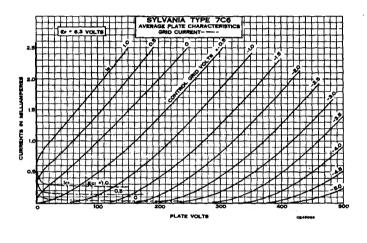
DUODIODE HIGH-MU TRIODE

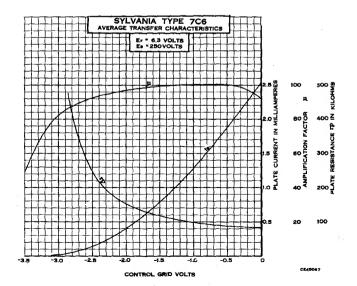
PHYSICAL SPECIFICATIONS

Dase		Lock-In 8 Pin
Bulb.		T-9
Mounting Position		Any
DETINO		
RATINGS		
Heater Voltage AC or DC (Nominal)		7.0 Volts
Maximum Plate Voltage	•••••	
Maximum Diode Drop at .8 Ma.	• • • • • • • • • • •	300 Volts
Maximum Diode Current ner Blats (Continue)	• • • • • • • • • • •	10 Volts
Maximum Diode Current per Plate (Continuous)		1.0 Ma.
Maximum Heater-Cathode Voltage	• • • • • • • • • •	90 Volts
TYPICAL OPERATIO	ANT	
Heater Voltage	6.2	6.3 Volts
neater Current	150	150 Ma.
riate voltage	100	250 Volts
Grid Voltage*	0.0	-1.0 Volt
riate Current [*]	1.0	1.3 Ma.
Plate Resistance*	0.1	0.1 Megohm
Mutual Conductance*	850	0.1 Megonm
Amplification Factor*	000	1000 µmhos

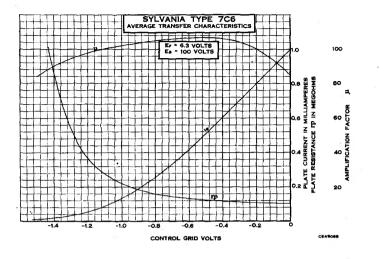
APPLICATION

Sylvania Type 7C6 is a single-ended duodiode high-mu triode having electrical characteristics quite similar to those for Type 75, except for the heater ratings. The diodes are substantially the same as those employed in


The diodes are substantially the same as those employed in other Sylvania duodiode high-mu triode types and therefore are suitable for conventional circuit applications. Diode curves are given under Type 7B6.


7C6 (Cont'd)

The triode section should not be employed with fixed bias. A high value of grid resistor is required and the triode operated essentially under zero bias conditions. With a plate supply voltage of 250 volts, the plate load resistor should be approxi-mately 0.25 megohm. For special applications this value may be varied to suit the conditions.


Resistance coupled data is given in the appendix. It will be noted from the base diagram that the cathode is connected to two contact pins, Numbers 4 and 7. Pin Number 4 is used as a mount support for the cathode, therefore, the potential of Pins 4 and 7 is the same.

The lock-in construction provides compactness, suitable shielding and the special lock-in feature. For a-c service the 7-volt heater rating corresponds to a 130-volt line condition.

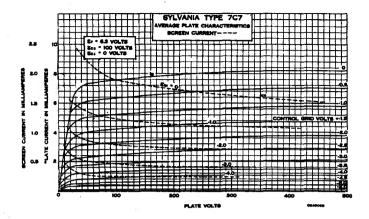
(Cont'd) 7C6

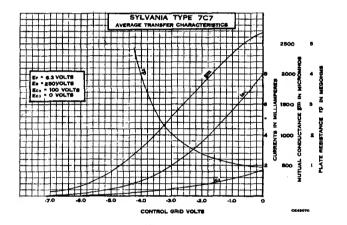
Sylvania Type 7C7

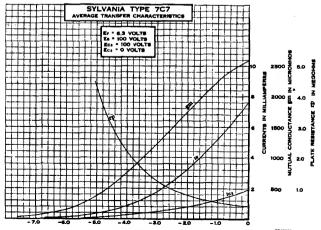
SHARP CUT-OFF RF PENTODE

8**V-L-5**

PHYSICAL SPECIFICATIONS


Base Bulb Maximum Overall Length Maximum Seated Height Mounting Position	· · · · · · · · · · · · · · · · · · ·	T-9 2 ²⁵ /5"
RĀTINGS		
Heater Voltage AC or DC (Nominal) Maximum Plate Voltage Maximum Screen Voltage Maximum Screen Supply Maximum Plate Dissipation Maximum Grid Bias Maximum Heater-Cathode Voltage	· · · · · · · · · · · · · · · · · · ·	7.0 Volts 300 Volts 100 Volts 300 Volts 1.0 Watt 0.1 Watt 0 Volt 90 Volts
Direct Interelectrode Capacitances:* Grid to Plate (G1 to P) Input; G1 to (F+K+Gs+Su+Shield) Output; P to (F+K+Gs+Su+Shield) *With 1% diameter shield (RMA Std. 308) conne		6.5 unf.
TYPICAL OPERATION	ON	
Heater Voltage. Heater Current. Plate Voltage. Screen Voltage.	6.3 150 100 100	6.3 Volts 150 Ma. 250 Volts Max. 100 Volts Max.


Grid Voltage	-3	-3 Volts Min.
Self-Bias Resistor	1350	1200 Ohms
Suppressor Grid	Connect to	Cathode
Plate Current	1.8	2.0 Ma.
Screen Current	0.4	0.5 Ma.
Plate Resistance (Approximate)	12	2 Megohma
Mutual Conductance	1225	1300 µmhos
		1000 primition


APPLICATION

Sylvania Type 7C7 is a sharp cut-off pentode with a low heater current rating. In other respects it is similar to the older Type 6J7GT. Design data for use in resistance coupled circuits appears in the appendix.

7C7 (Cont'd)

CONTROL GRID VOLTS

8BN-L-0

Sylvania Type 7E5

HIGH-FREQUENCY TRIODE

PHYSICAL SPECIFICATIONS

BaseLock-In 8 Pin Bulb
Heater Voltage AC or DC (Nominal) 7.0 Volts Maximum Plate Voltage 250 Volts Maximum Plate Current 16 Ma. Maximum Grid Current 6 Ma. Maximum Plate Dissipation 4 Watts Maximum Heater-Cathode Voltage 90 Volts Direct Interelectrode Capacitances:* 90 Volts
Grid to Plate 1.5 μμf. Input 3.6 μμf. Output 2.8 μμf. *With 1% diameter shield (RMA Std. 308) connected to cathode. TYPICAL OPERATION
CLASS A1 AMPLIFIER
Heater Voltage
UHF OSCILLATOR-750 Mc.
Heater Voltage
UHF OSCILLATOR OR POWER AMPLIFIER-300 Mc.*
Heater Voltage. 6.3 Volts Plate Supply Voltage§ 150 Volts Plate Current. 16 Ma. Grid Current. 6.0 Ma. Grid Resistor (Approximate). 1700 Ohms Power Output. 0.20 Watt §Supplied through 3000 ohm dropping resistor. 0.20 Watt
LOCAL OSCILLATOR FOR 300 Mc. MIXER DRIVING*
Heater Voltage. 6.3 Volts Plate Supply Voltage\$ 90 Volts Plate Current. 7.8 Ma. Grid Voltage. -7.0 Volts Grid Resistor 3000 Ohms Mixer Developed Bias‡ -5.3 Volts §Supplied through 3000 ohm dropping resistor. -5.3 Volts *Quarter wave four-line oscillator in which the line shortening is approximately 30% of a quarter wave length. TDeveloped bias across 35,000 ohm grid leak of UHF triode mixer tuned to 324 megacycles. 324
APPLICATION
Sylvania Type 7E5 is a cathode type triode of Lock-In con- struction designed for ultra-high frequency applications. This tube can be used as a signal source or local oscillator to fre-

Sylvania Type 7Eb is a cathode type triode of Lock-In construction designed for ultra-high frequency applications. This tube can be used as a signal source or local oscillator to frequencies of 750 megacycles when used in a double ended transmission line circuit. This type of operation is facilitated by a symmetrical arrangement of double grid and plate leads. These connections are brought out to the Lock-In single ended base from opposite ends of their respective element structures. Useful power output can be obtained at frequencies of 400 megacycles and lower, but below approximately 200 megacycles the use of other types, such as Sylvania Type 7A4, are recommended.

For use in resistance coupled circuits, see data in appendix.

7E6 Sylvania Type

DUODIODE MEDIUM-MU TRIODE

PHYSICAL SPECIFICATIONS

Base Bulb. Maximum Overall Length. Maximum Seated Height. Mounting Position.	T9 2 ²⁵ /4
RATINGS	~
Heater Voltage AC or DC (Nominal) Maximum Plate Voltage. Maximum Plate Dissipation Maximum Diode Drop at .8 Ma. Maximum Continuous Diode Current per Plate. Maximum Heater-Cathode Voltage.	7.0 Volts 300 Volts 2.5 Watts 10 Volts 1.0 Ma. 90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate Input. Output. Grid to Diode 1. Grid to Diode 2. *With 1% diameter shield (RMA Std. 308) connected to cathou	1.5 $\mu\mu f.$ 3.0 $\mu\mu f.$ 2.4 $\mu\mu f.$ 0.01 $\mu\mu f.$ Max. 0.04 $\mu\mu f.$ Max. de.

TYPICAL OPERATION

Heater Voltage	6.3	6.3 Volts
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Grid Voltage§	-3	-9 Volts
Self-Bias Resistor		950 Ohms
Plate Current		9.5 Ma.
Plate Resistance		8500 Ohms
Mutual Conductance		1900 μ mhos
Amplification Factor	16.5	16
DC resistance in the grid circuit should not exc	eed 1.0	megohm under maxi-

mum rated conditions.

APPLICATION

Sylvania Type 7E6 is a Lock-In duodiode triode having medium-mu characteristics. It is intended for use in conjunction with transformer coupled circuits although resistance coupling data are given in appendix. The diode section is the same as that in Type 7B6 and reference should be made to that type for curves.

Sylvania Type 7E7

DUODIODE RF PENTODE

SAE-L-7

PHYSICAL SPECIFICATIONS

BaseLoc	k-In 8 Pin
Bulb.	T9
Maximum Overall Length	225/22
Maximum Seated Height	21/4"
Mounting Position	Any

RATINGS

Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage	300 Volts
Maximum Screen Voltage	100 Volts
Maximum Sreen Supply	300 Volts
Maximum Plate Dissipation	2.0 Watts
Minimum Grid Bias	0.3 Watt
Maximum Diode Drop at 0.8 Ma.	0 Volts
Maximum Diode Drop at 0.8 Ma.	1.0 Ma.
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:* Grid to Plate. Input. Output.	.005 μμf. Max. 4.6 μμf. 5.5 μμf.

TYPICAL OPERATION

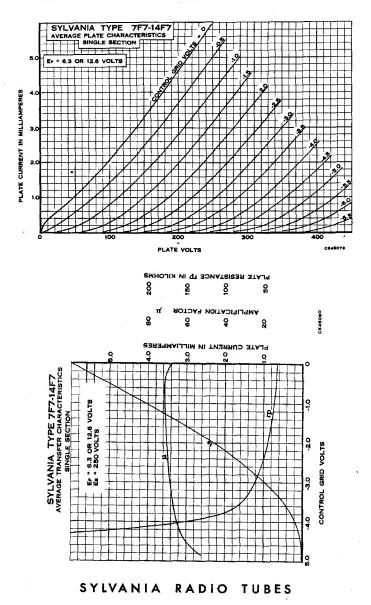
RF OR IF AMPLIFIER

Heater Voltage	6.3	6.3 Volts
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Screen Voltage	100	100 Volts
Grid Voltage	-1.0	-3.0 Volts
Self-Bias Resistor	80	330 Ohms
Plate Current	10.0	7.5 Ma.
	2.7	1.6 Ma.
Plate Resistance (Approximate)	0.15	0.7 Megohm
Mutual Conductance		1300 µmhos
Grid Voltage for 2 µmhos Mutual Conductance	-36	-42.5 Volts

Sylvania Type 7F7

HIGH-MU DUO TRIODE

PHYSICAL SPECIFICATIONS


BaseBulb	T 9
Maximum Overall Length. Maximum Seated Height.	21/4
Mounting Position	Any
RATINGS	
Heater Voltage AC or DC (Nominal) Maximum Plate Voltage Maximum Plate Dissipation per Plate Minimum Grid Voltage Maximum Heater-Cathode Voltage	7.0 Volts 300 Volts 1.0 Watt 0 Volt 90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate. Input Output. Grid 1 to Grid 2. Plate to Plate *With 15% diameter shield (RMA Std. 308) connected to cathod	1.6 μμf. 2.4 μμf. 2.0 μμf. 0.2 μμf. Max. 1.0 μμf. Max. e.

TYPICAL OPERATION CLASS & AMPLIFIER PER SECTION

Heater Voltage	6.3	6.3 Volts
Heater Current.	300	300 Ma.
Plate Voltage	100	250 Volts
	-1.0	-2.0 Volts
Plate Current.	.65	2.3 Ma.
Plate Resistance Mutual Conductance	62000	44000 Ohms
Amplification Factor	1125	1600 [°] µmhos

APPLICATION

Sylvania Type 7F7 is a double triode high-mu amplifier tube of Lock-In construction. It is designed for use as a resistance coupled amplifier or phase inverter. All elements except the common heater are brought out separately allowing each triode section to operate independently of the other. Resistance coupling data are given in the appendix.

Sylvania Type 7F8

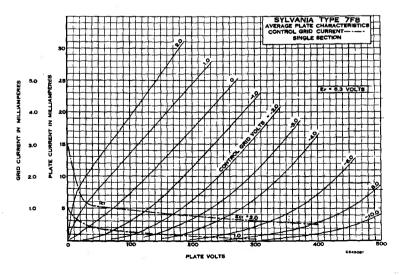
DOUBLE TRIODE

ە ساللى

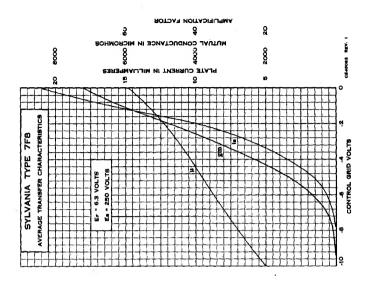
Base Bulb. Maximum Overall Length. Maximum Seated Height. Mounting Position.	T9 2%2″ 1¾″
RATINGS	
Heater Voltage AC or DC (Nominal) Maximum Plate Voltage Maximum Plate Dissipation (Total hoth sections) Minimum External Grid Bias Voltage Maximum Heater-Cathode Voltage	7.0 Volts 300 Volts 3.5 Watts 0 Volt 90 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate Input. Output Grid to Grid.	1.2 μμ f. 2.8 μμf. 1.4 μμf. 0.1 μμf. Max.

Plate to Plate . 0.5 $\mu\mu$. Max. Heater to Cathode (External shield connected to ground)... 2.8 $\mu\mu$. *With 1% diameter shield (RMA Std. 308) connected to cathode.

TYPICAL OPERATION


Per Section except Heater

Heater Voltage (AC or DC)	
Heater Current	
Plate Voltage	250 Volts
Self-Bias Resistor	500 Ohms
Plate Current	6.0 Ma.
Mutual Conductance	3300 µmhos
Amplification Factor	48
Grid Voltage for 10 µa. DC Plate Current (Approx.)	-11.0 Volts
Maximum Grid Circuit Resistance	


APPLICATION

Sylvania Type 7F8 is a high mutual conductance double triode designed for use at frequencies up to 300 or 400 megacycles. With proper care each section may be used separately to effect tube and space savings since all elements except heater are separate.

Design data for use in resistance coupled circuits may be found in the appendix.

7F8 (Cont'd)

7G7 Sylvania Type

SHARP CUT-OFF RF PENTODE

8**V-L-5**

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin	
Bulb. Maximum Overall Length	T9	
Maximum Seated Height	225,4	
Mounting Position	Any	
RATINGS	-	
Heater Voltage (Nominal) AC or DC	7.0 Volts	
Maximum Plate Voltage	300 Volts	
Maximum Screen Voltage	100 Volts	
Maximum Screen Supply Voltage	300 Volts	
Maximum Plate Dissipation	1.5 Watts	
Maximum Screen Dissipation	0.3 Watt	
Maximum Heater-Cathode Voltage	90 Volts	
Direct Interelectrode Capacitances:*		
Grid to Plate).006 uuf. Max.	
Input: G to (F+K+Gs+Su+Internal Shield)	9.0 µµf.	
Output: P to $(F+K+Gs+Su+Internal Shield)$ *With $1\frac{5}{6}$ diameter shield (RMA Std. 308) connected to catho	7.0 µuf.	
with 17g diameter smell (third Stu. 503) connected to cathode.		
TYPICAL OPERATION		
Heater Voltage	6.3 Volts	
Heater Current.	450 Ma.	

meater vonage	
Heater Current	450 Ma.
Plate Voltage	250 Volts
Suppressor Voltage	Fie to Cathode
Screen Voltage	100 Volts
Grid Voltage	-2 Volts
Self-Bias Resistor	250 Ohms
Plate Current.	6.0 Ma.
Screen Current	2.0 Ma.
Plate Resistance (Approximate)	0.8 Megohm
Mutual Conductance	4500 umbos
Grid Voltage for Cathode Current Cut-off (Approx.)	

Sylvania Type 7G8 SHARP CUT-OFF DOUBLE TETRODE

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb	Т9
Maximum Overall Length	2%
Maximum Seated Height	137
Mounting Position	Ány
	•

RATINGS

Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage.	300 Volts
Maximum Screen Supply.	300 Volts
Maximum Screen Voltage.	100 Volts
Maximum Plate Dissipation (Per Section).	1.5 Watts
Miximum Screen Dissipation (Per Section).	0.1 Watt
Minimum Control Grid Bias.	0 Volt
Maximum Heater-Cathode Voltage.	90 Volts
Direct Interelectrode Capacitances:* Grid to Plate	3.40 µµf.

TYPICAL OPERATION

CLASS A1 AMPLIFIER (Per Section except Heater)§

Heater Voitage			6.3 Volts
Screen Voltage			
Grid Voltage			-2.5 Volts
Plate Current			4.5 Ma.
Screen Current			0.8 Ma.
Dereen Ourrenter.			0100
Plate Resistance			
Gifu Volcage tor to p	a. I late Current.		AL FORMS
To assure operati	ion of one section	only, at least 40 vo	its negative must be
applied to the grid of			-
where a ro the stig of	the section not of	herering.	

Sylvania Type 7H7

SEMI-REMOTE CUT-OFF RF PENTODE

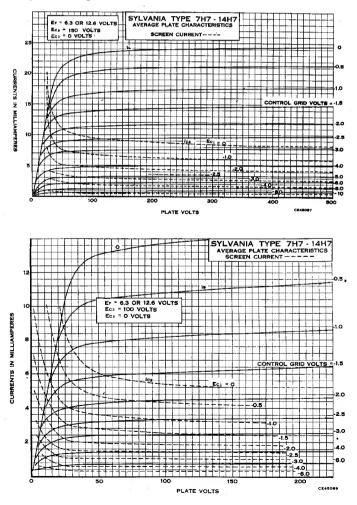
8V-L-5

PHYSICAL SPECIFICATIONS

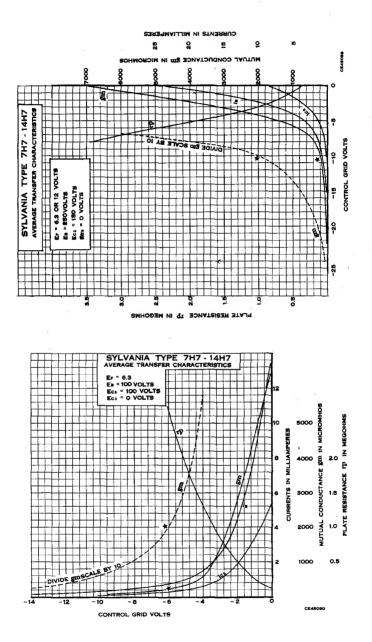
Base	
Bulb	Т9
Maximum Overall Length	225/4"
Maximum Seated Height	21/4*
Mounting Position	Any
RATINGS	
RAIINGS	
	7.0 Volts
	300 Volts
Maximum Screen Voltage	150 Volts
Maximum Screen Supply Voltage	300 Volts
Maximum Plate Dissipation	2.5 Watts
Maximum Screen Dissipation	0.5 Watt
Minimum External Grid Bias Voltage	0 Volt
Maximum Heater-Cathode Voltage	90 Volts

Direct Interelectrode Capacitances:*

Grid to Plate 0.004 $\mu\mu$ f. Max. Input 8.0 $\mu\mu$ f. Output 7.0 $\mu\mu$ f. *With 1% i diameter shield (RMA Std. 308) connected to cathode


7H7 (Cont'd)

TYPICAL OPERATION CLASS A1 AMPLIFIER


Heater Voltage (AC or DC)	6.3	6.3 Volts
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Screen Voltage	100	150 Volts
Grid Voltage		Volts
Self-Bias Resistor	150	180 Ohms
Suppressor and Internal Shield Plate Current		
Screen Current.	$7.5 \\ 2.6$	10.0 Ma.
Plate Resistance	0.35	3.2 Ma. 0.8 Megohm
Mutual Conductance	4000	4000 µmhos
Grid Voltage for Mutual Conductance of	4000	4000 µmmos
35 μmhos (Approximate)	-12	-19 Volts

APPLICATION

Sylvania Type 7H7 is a semi-remote cut-off pentode suitable for RF or television service. It is similar to Type 6AB7 except for lower heater current and slightly lower mutual conductance. The Lock-In construction provides ruggedness, suitable shielding and short leads so necessary in high-frequency circuits. The high mutual conductance helps to compensate for the low gain associated with high-frequency and wide-band amplifier designs.

(Cont'd) 7H7

7**J7** Sylvania Type

TRIODE HEPTODE CONVERTER

PHYSICAL SPECIFICATIONS

Base	T-9
Maximum Overall Length	21/4
Mounting Position	Any
RATINGS	
Heater Voltage (Nominal) AC or DC. Maximum Heptode Plate Voltage Maximum Heptode Screen Voltage	. 300 Volts
Maximum Heptode Screen Supply Voltage Minimum Heptode Control Grid (G) Voltage	. 300 Volts . 0 Volt
Maximum Triode Plate Voltage. Maximum Triode Plate Supply Voltage. Maximum Triode Plate Dissipation	. 300 Volts
Maximum Triode Flate Dissipation Maximum Total Cathode Current Maximum Heater-Cathode Voltage	. 14 Ma.
, Direct Interelectrode Capacitances:*	
Grid G to Heptode Plate. Grid G to Oscillator Plate. Grid G to Grid Go. Grid Go to Oscillator Plate. Grid Go to All Other Electrodes (r-f input).	. 0.1 μμf. Max. . 0.3 μμf. Max. . 0.9 μμf.
Oscillator Plate to All Electrodes Except Grid Go (Oscillator Output)	. 3.2 μμf.
Plate (Oscillator Input) Heptode Plate to All Electrodes (Mixer Output) *With 15% diameter shield (RMA Std. M8-308) connected to	. 7.5 μμf. . 7.5 μμf.
*With 15% diameter shield (RMA Std. M8-308) connected to	cathode.
	cathode.
TYPICAL OPERATION Heater Voltage 6.3 Heater Current 300 Plate Voltage (Heptode) 100 Oscillator Plate Voltage (Triode) 100	6.3 Volts 300 Ma. 250 Volts 250** Volts
TYPICAL OPERATION Heater Voltage 6.3 Heater Current 300 Plate Voltage (Heptode) 100 Oscillator Plate Voltage (Triode) 100 Screen Voltage (Heptode) 100 Control Grid Voltage (Heptode Grid G) -3 Oscillator Grid Resistor (Triode) 50000	6.3 Volts 300 Ma. 250 Volts 250** Volts 100 Volts -3 Volts 50000 Ohms
TYPICAL OPERATION Heater Voltage 6.3 Heater Current 300 Plate Voltage (Heptode) 100 Oscillator Plate Voltage (Triode) 100 Screen Voltage (Heptode) 100 Control Grid Voltage (Heptode Grid G) -3 Oscillator Grid Resistor (Triode) 50000 Plate Current (Heptode) 1.5 Screen Current (Heptode) 2.6	6.3 Volts 300 Ma. 250 Volts 100 Volts -3 Volts 50000 Ohms 1.4 Ma. 2.8 Ma. 5.0 Ma.
TYPICAL OPERATION Heater Voltage 6.3 Heater Current 300 Plate Voltage (Heptode) 100 Oscillator Plate Voltage (Triode) 100 Control Grid Voltage (Heptode) 100 Screen Voltage (Heptode) -3 Oscillator Grid Resistor (Triode) 50000 Plate Current (Heptode) 1.5 Screen Current (Heptode) 2.6 Oscillator Flate Current (Triode) 3.2 Oscillator Grid Current (Triode) 0.3 Plate Resistance (Heptode) 0.5	6.3 Volts 300 Ma. 250 Volts 250** Volts 100 Volts -3 Volts 50000 Ohms 1.4 Ma. 2.8 Ma. 5.0 Ma. 0.4 Ma. 1.5 Megohms
TYPICAL OPERATION Heater Voltage 6.3 Heater Current 300 Plate Voltage (Heptode) 100 Oscillator Plate Voltage (Triode) 100 Screen Voltage (Heptode) 100 Control Grid Voltage (Heptode) 100 Plate Voltage (Heptode) 100 Control Grid Voltage (Heptode) -3 Oscillator Grid Resistor (Triode) 5 Screen Current (Heptode) 1.5 Screen Current (Triode) 3.2 Oscillator Flate Current (Triode) 0.3 Plate Resistance (Heptode) 0.5 Conversion Conductance 280 Conversion Conductance (Ec ₁ = - 20) 2 Total Cathode Current 7.7	 6.3 Volts 300 Ma. 250 Volts 250** Volts 100 Volts -3 Volts 50000 Ohms 1.4 Ma. 2.8 Ma. 5.0 Ma. 0.4 Ma. 1.5 Megohms 290 μmhos 2 μmhos 9.6 Ma.
TYPICAL OPERATION Heater Voltage 6.3 Heater Current 300 Plate Voltage (Heptode) 100 Oscillator Plate Voltage (Triode) 100 Control Grid Voltage (Heptode) 100 Control Grid Voltage (Heptode) 100 Plate Voltage (Heptode) 30 Plate Voltage (Heptode) 30 Oscillator Grid Resistor (Triode) 30 Oscillator Flate Current (Triode) 3.2 Oscillator Grid Current (Triode) 0.5 Plate Resistance (Heptode) 0.5 Conversion Conductance (Ec1= - 20) 2 Conversion Conductance (Ec1= - 20) 2 Total Cathode Current. 7.7 **Applied through 20000 ohms series resistance properly by-p	 6.3 Volts 300 Ma. 250 Volts 250** Volts 100 Volts -3 Volts 50000 Ohms 1.4 Ma. 2.8 Ma. 5.0 Ma. 0.4 Ma. 1.5 Megohms 290 μmhos 2 μmhos 9.6 Ma.
TYPICAL OPERATION Heater Voltage 6.3 Heater Current 300 Plate Voltage (Heptode) 100 Oscillator Plate Voltage (Triode) 100 Screen Voltage (Heptode) 100 Control Grid Voltage (Heptode) 100 Plate Voltage (Heptode) 100 Control Grid Voltage (Heptode) -3 Oscillator Grid Resistor (Triode) 5 Screen Current (Heptode) 1.5 Screen Current (Triode) 3.2 Oscillator Flate Current (Triode) 0.3 Plate Resistance (Heptode) 0.5 Conversion Conductance 280 Conversion Conductance (Ec ₁ = - 20) 2 Total Cathode Current 7.7	6.3 Volts 300 Ma. 250 Volts 250** Volts 100 Volts -3 Volts 50000 Ohms 1.4 Ma. 2.8 Ma. 5.0 Ma. 0.4 Ma. 1.5 Megohms 290 μmhos 9.6 Ma. assed.
TYPICAL OPERATION Heater Voltage 6.3 Heater Current 300 Plate Voltage (Heptode) 100 Oscillator Plate Voltage (Triode) 100 Control Grid Voltage (Heptode) 100 Control Grid Voltage (Heptode) 100 Plate Voltage (Heptode) 30 Plate Voltage (Heptode) 30 Oscillator Grid Resistor (Triode) 30 Oscillator Flate Current (Triode) 3.2 Oscillator Grid Current (Triode) 0.5 Plate Resistance (Heptode) 0.5 Conversion Conductance (Ec1= - 20) 2 Conversion Conductance (Ec1= - 20) 2 Total Cathode Current. 7.7 **Applied through 20000 ohms series resistance properly by-p	 6.3 Volts 300 Ma. 250 Volts 250** Volts 100 Volts -3 Volts 50000 Ohms 1.4 Ma. 2.8 Ma. 5.0 Ma. 0.4 Ma. 1.5 Megohms 290 μmhos 9.6 Ma. assed. 6.3 Volts -3 Volts -3 Volts -3 Volts 6.6 Ma.

7K7 Sylvania Type

DUODIODE HIGH-MU TRIODE

(Separate Diode Cathode)

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb.	T-9
Maximum Overall Length Maximum Seated Height	21/2
Mounting Position	

SYLVANIA RADIO TUBES

.

(Cont'd) 7K7

RATINGS

Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage.	300 Volts
Maximum Diode Drop for 1.5 Ma. (Per Diode)	10 Volts
Maximum Heater-Cathode Voltage.	90 Volts
Maximum Plate Dissipation.	1 Watt
Minimum External Grid Bias.	0 Volt
Direct Interelectrode Capacitances:*	
Grid to Plate.	1.7 μμί.
Input.	2.4 μμί.
Output.	2.0 μμί.
Diode 1 to Grid 1.	0.25 μμί. Max.
Diode 2 to Grid 1.	0.25 μμί. Max.
Diode 2 cathode to Diode 1.	2.0 μμί. Max.
Diode Cathode to Diode 2.	2.0 μμί. Max.
*With 15% diameter shield (RMA Std. 308) connected to cath	ode.
TYPICAL OPERATION AS AMPLIFIER-0	CLASS A
Heater Voltage AC or DC.	6.3 Volts
Heater Current.	300 Ma.
Plate Voltage	250 Volts
Grid Voltage.	-2.0 Volts
Amplification Factor.	70
Plate Resistance (Approximate)	44000 Ohms
Mutual Conductance.	1600 µmhos
Plate Current.	2.3 Ma.

Resistance coupled amplifier data appears under $\dot{T}ype~7F7$ in the appendix.

Sylvania Type 7L7

SHARP CUT-OFF RF PENTODE

8V-L-5

PHYSICAL SPECIFICATIONS

Base		
Bulb	Т-9	
Maximum Overall Length		
Maximum Seated Height	214	
Mounting Position	Any	
RATINGS		
Heater Voltage (Nominal) AC or DC	7.0 Volts	
Maximum Plate Voltage	300 Volts	
Maximum Screen Voltage		
Maximum Screen Supply Voltage	300 Volta	
Maximum Plate Dissipation	4.0 Watt	
Maximum Screen Dissipation	0.4 Watt	
Minimum Grid Bias Voltage.	0 Volt	
Maximum Heater-Cathode Voltage	90 Volta	
Maximum Meaver-Oscilode Forage		
Direct Interelectrode Capacitances:*		
Grid to Plate	0.01f Max	
Input: G to $(F+K+Gs+Su+Internal Shield)$	8.0 μμf.	
Output: P to $(F + K + Gs + Su + Internal Shield)$		
*With 15% diameter shield (RMA Std. 308) conne	ostod to sethodo and base sholl	
With 1% diameter Smeld (ItiMA Did. 506) conne	ected to cathoue and base shell.	
TYPICAL OPERAT	ION	
CLASS A1 AMPLIFI	ER	
Heater Voltage	6.3 6.3 Volts	
Heater Voltage	6.3 6.3 Volts	
Heater Current	6.3 6.3 Volts 300 300 Ma.	
Heater Current Plate Voltage	6.3 6.3 Volts 300 300 Ma.	
Heater Current Plate Voltage Screen Voltage	6.3 6.3 Volts 300 300 Ma. 100 250 Volts	
Heater Current. Plate Voltage Screen Voltage. Grid Voltage.	6.3 6.3 Volts 300 300 Ma. 100 250 Volts 100 100 Volts	
Heater Current. Plate Voltage. Grid Voltage. Suppressor.	6.3 6.3 Volts 300 300 Ma. 100 250 Volts 100 100 Volts -1 -1.5 Volt Tied to Cathode	
Heater Current. Plate Voltage Screen Voltage. Grid Voltage. Suppressor. Self-Bias Resistor.	6.3 6.3 Volts 300 300 Ma. 100 250 Volts 100 100 Volts -1 -1.5 Volt Tied to Cathode 125 250 Ohms	
Heater Current. Plate Voltage Grid Voltage. Suppressor. Self-Bias Resistor. Plate Current.	6.3 6.3 Volts 300 300 Ms. 100 250 Volts 100 100 Volts -1 -1.5 Volt Tied to Cathode 125 250 Ohms 5.5 4.5 Ms.	
Heater Current. Plate Voltage Screen Voltage. Grid Voltage. Suppressor. Self-Bias Resistor. Plate Current.	6.3 6.3 Volts 300 300 Ma. 100 250 Volts 100 100 Volts -1 -1.5 Volt Tied to Cathode 125 250 Ohms 5.5 4.5 Ma. 2.4 1.5 Ma.	
Heater Current. Plate Voltage Screen Voltage. Grid Voltage. Suppressor. Self-Bias Resistor. Plate Current. Screen Current. Plate Resistance (Approximate).	6.3 6.3 Volts 300 300 Ma. 100 250 Volts 100 100 Volts -1 -1.5 Volt Tied to Cathode 125 250 Ohms 5.5 4.5 Ma. 2.4 1.5 Ma. 0.1 1.0 Megohm	
Heater Current. Plate Voltage Screen Voltage. Grid Voltage. Suppressor. Self-Bias Resistor. Plate Current.	6.3 6.3 Volts 300 300 Ma. 100 250 Volts 100 100 Volts -1 -1.5 Volt Tied to Cathode 125 250 Ohms 5.5 4.5 Ma. 2.4 1.5 Ma.	

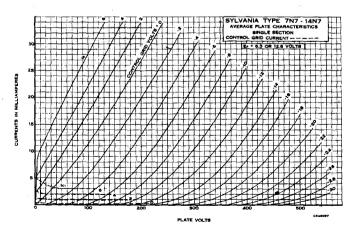
7N7 Sylvania Type

MEDIUM-MU DUOTRIODE

PHYSICAL SPECIFICATIONS

BaseBulb			
Maximum Overall Length			
Maximum Seated Height			2 1/8
Mounting Position			Any
-	-		-
RATING	S		
Heater Voltage AC or DC (Nominal)			7.0 Volts
Maximum Plate Voltage		•••••	300 Volts
Maximum Plate Dissipation per Section			2.5 Watts
Maximum Heater-Cathode Voltage			90 Volts
Minimum Grid Voltage			0 Volt
Direct Interelectrode Capacitances:*			
	T1†		T2†
Grid to Plate	3.0		3.0 µµf.
Input	3.4		2.9 µµf.
Output	2.0		2.4 µµf.
Plate 1 to Plate 2	.	0.34	μµf.
Grid 1 to Grid 2	• • • •	0.40	μµf.
Grid 1 to Plate 2		0.08	μµf.
Grid 2 to Plate 1 *With 134" diameter shield (BMA Std. 308)		0.06	μμf.
*With 154" diamater shield (RMA Std 308)	connecte	ad to cathou	in ni

*With 15% diameter shield (KMA Std. 308) connected to cathode. †Triode No. 1 connected to pins 5, 6 and 7; Triode No. 2 to pins 2, 3 and 4.


TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Voltage (AC or DC)	6.3	6.3 Volts
Heater Current	0.600	0.600 Ampere
Plate Voltage	90	250 Volts
Grid Voltage	0	-8 Volts
Self-Bias Resistor	0	900 Ohms
Plate Current.		9.0 Ma.
Plate Resistance	6700	7700 Ohms
Mutual Conductance	3000	2600 µmhos
Amplification Factor	20	20

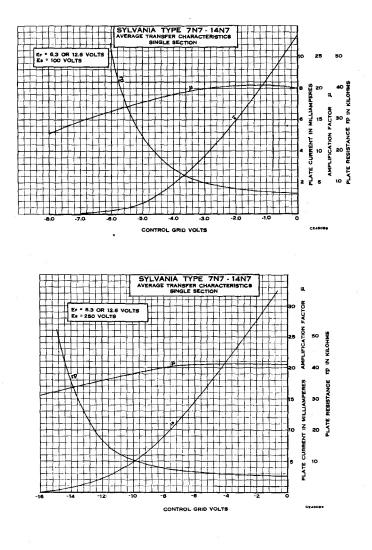

PHASE INVERTER

Plate Supply Voltage	100	250 Volts
Grid Voltage	-2.25	-5.5 Volts
Plate Current per Section	1.5	2.4 Ma.
Plate Resistor		50000 Ohms
Self-Bias Resistor	750	1150 Ohms
Maximum Output Voltage (RMS)	20	65 Volts

The 7N7 is identical to two Type 7A4 tubes and reference is made to that type for curves, and to the appendix for resistance coupled data

(Cont'd) 7N7

Sylvania Type 7Q7 HEPTODE CONVERTER

PHYSICAL SPECIFICATIONS

BaseBalb	
Maximum Overall Length	225/2
Maximum Seated Height	21⁄4″ Any

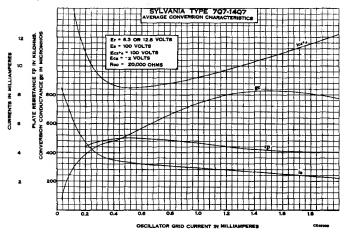
7Q7 (Cont'd)

RATINGS

Heater Voltage (Nominal) AC or DC	7.0 Volts
Maximum Plate Voltage	300 Volts
Maximum Screen Voltage	100 Volts
Maximum Screen Supply Voltage	300 Volts
Maximum Plate Dissipation	1.0 Watt
Maximum Screen Dissipation	1.0 Watt
Maximum Total Cathode Current	14 Ma.
Minimum Signal-Grid External Bias Voltage (with self-	
excited oscillator)	0 Volt
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Grid G to Plate	0.15 µµf. Max.
	0.15 μμf. Max. 0.20 μμf. Max.
Grid G to Go	0.20 µµf. Max.
Grid G to Go Grid Go to Plate	0.20 μμf. Max. 0.15 μμf. Max.
Grid G to Go Grid Go to Plate Signal Input.	0.20 μμf. Max. 0.15 μμf. Max. 9.0 μμf.
Grid G to Go Grid Go to Plate Signal Input Oscillator Input	0.20 μμf. Max. 0.15 μμf. Max. 9.0 μμf. 7.0 μμf.
Grid G to Go. Grid Go to Plate. Signal Input. Oscillator Input. Mixer Output.	0.20 μμf. Max. 0.15 μμf. Max. 9.0 μμf. 7.0 μμf. 9.0 μμf.
Grid G to Go Grid Go to Plate Signal Input. Oscillator Input. Mixer Output. Grid Go to All Except Cathode.	0.20 μμf. Max. 0.15 μμf. Max. 9.0 μμf. 7.0 μμf. 9.0 μμf. 5.0 μμf.
Grid G to Go. Grid Go to Plate. Signal Input. Oscillator Input. Mixer Output. Grid Go to All Except Cathode. Grid Go to Cathode.	0.20 μμf. Max. 0.15 μμf. Max. 9.0 μμf. 7.0 μμf. 9.0 μμf. 5.0 μμf. 2.2 μμf.
Grid G to Go Grid Go to Plate Signal Input. Oscillator Input. Mixer Output. Grid Go to All Except Cathode.	0.20 μμf. Max. 0.15 μμf. Max. 9.0 μμf. 7.0 μμf. 9.0 μμf. 5.0 μμf. 2.2 μμf. 6.0 μμf.

TYPICAL OPERATION

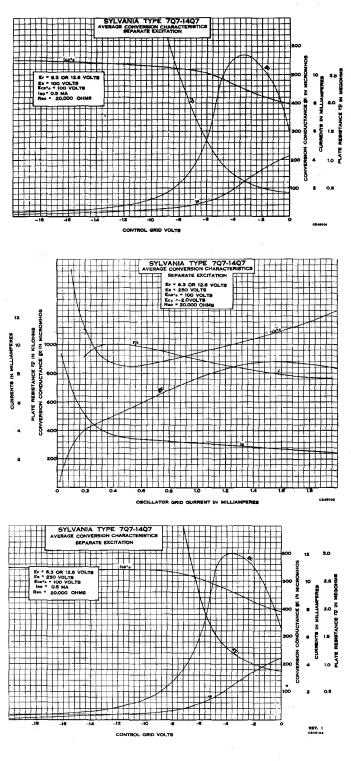
CONVERTER (SEPARATELY EXCITED)


Heater-Voltage	6.3	6.3 Volts
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Screen Voltage	100	100 Volts
Control Grid Voltage** (G)	-2	-2 Volts
Self-Bias Resistor	160	160 Ohms
Suppressor Grid and Shield Voltage	0	0 Volt
Oscillator Grid Resistor (Go)	20000	20000 Ohms
Plate Resistance (Approximate)	0.5	1.0 Megohm
Oscillator Grid Current	0.5	0.5 Ma.
Plate Current	3.3	3.5 Ma.
Screen Current (Gs)	8.5	8.5 Ma.
Total Cathode Current	12.3	12.5 Ma.
Conversion Conductance at $Ec3 = -2$	525	550 µmhos
Conversion Conductance at $Ec3 = -6$	275	300 µmhos
Conversion Conductance at $Ec3 = -10$	65	$70 \mu mhos$
Conversion Conductance at $Ec3 = -35$ (Approx.).	2	2 µmhos
##Channelowistion for solf excitation are similar to	those given	or sone reto orgita-

Instactoristics for

Note: With Grid Gs connected to plate (100 volts) and signal applied to Grid Go (0 volt bias), the Mutual Conductance is 4500 µmhos, plate current 27 Ma. amplification factor 13. Grid G is connected to ground during this test.

APPLICATION


Sylvania Type 7Q7 is a pentagrid converter having electrical characteristics quite similar to those for Type 6SA7. The Lock-In construction embodied in this type provides compactness, suitable shielding and the lock-in feature. For a-c service the 7-volt heater rating corresponds to a 130-volt line condition. It is also the nominal voltage for automotive receiver service. Ratings marked Max. and Min. are design centers for a line voltage of 117 volts. For automotive service the design centers are 90% of the values indicated, using a battery terminal voltage of 6.6 volts.

TUBES

SYLVANIA RADIO

(Cont'd) 7Q7

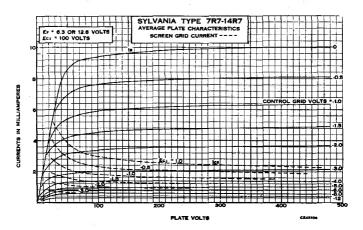
7R7 Sylvania Type

DUODIODE PENTODE

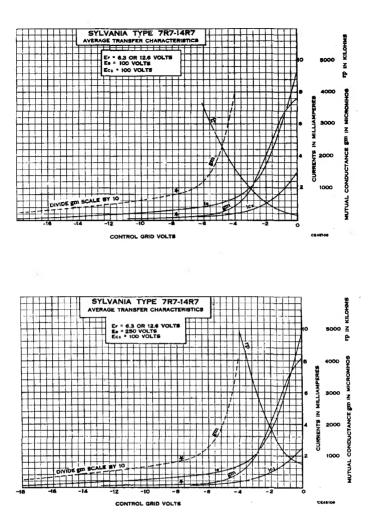
PHYSICAL SPECIFICATIONS

Base	BOCK-IN & Pin
Bulb	Т-9
Maximum Overall Length	2 ²⁵ /2"
Maximum Seated Height	
Mounting Position	

RATINGS


Heater Voltage AC or DC (Nominal). Maximum Plate Voltage. Maximum Screen Voltage. Maximum Screen Supply Voltage. Maximum Plate Dissipation. Maximum Screen Dissipation. Minimum External Grid Bias. Maximum Heater-Cathode Voltage. Maximum Diode Drop for .8 Ma. Maximum Diode Current per Plate (continuous).	0 Volt 90 Volts 10 Volts
Direct Interelectrode Capacitances:*	
Grid to Plate	
Input Output	5.6 μμf. 5.3 μμf.
Diode 1 to Grid 1	. 005 μμf. Max.
Diode 2 to Grid 1 *With 15% diameter shield (RMA Std. 308) connected to cathe	.002 µµf. Max.

TYPICAL OPERATION


APPLICATION

Applications of this tube will be similar to those of other high gain pentodes. The lower capacitance together with shielding and high mutual conductance make this tube suitable for many RF and wide band amplifier services. For diode characteristics, refer to curves for Type 7B6.

Data for use in resistance coupled circuits can be found in the appendix.

(Cont'd) 7R7

Sylvania Type 7S7 TRIODE HEPTODE CONVERTER

PHYSICAL SPECIFICATIONS

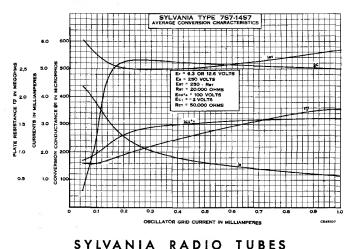
Base	Lock-In 8 Pin
Bulb.	T -9
Maximum Overall Length Maximum Seated Height	21/2
Mounting Position	Any

757 (Cont'd)

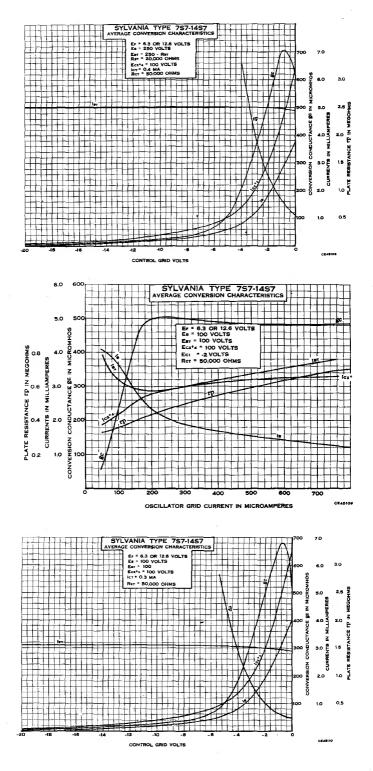
RATINGS

Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Heptode Plate Voltage	300 Volts
Maximum Heptode Screen Voltage	100 Volts
Maximum Heptode Screen Supply	300 Volts
Minimum Heptode Control Grid Voltage	0 Volt
Maximum Heptode Plate Dissipation	0.6 Watt
Maximum Heptode Screen Dissipation	0.4 Watt
Maximum Triode Plate Voltage	175 Volts
Maximum Triode Plate Supply Voltage	300 Volts
Maximum Triode Plate Dissipation	- 1.0 Watt
Maximum Total Cathode Current	14 Ma.
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
	0.03 uuf. Max.
Heptode Grid G to Plate	0.03 μμf. Max. 0.10 μμf. Max.
Heptode Grid G to Plate	0.03 μμf. Max. 0.10 μμf. Max. 0.35 μμf. Max.
Heptode Grid G to Plate Heptode Grid G to Triode Plate Heptode Grid G to Grid Go.	0.10 μμf. Max. 0.35 μμf. Max.
Heptode Grid G to Plate Heptode Grid G to Triode Plate Heptode Grid G to Grid Go Triode Grid G to Triode Plate	0.10 μμf. Max. 0.35 μμf. Max. 1.0 μμf.
Heptode Grid G to Plate. Heptode Grid G to Triode Plate. Heptode Grid G to Grid Go. Triode Grid Go to Triode Plate. Input (Signal).	0.10 μμf. Max. 0.35 μμf. Max.
Heptode Grid G to Plate. Heptode Grid G to Triode Plate. Heptode Grid G to Grid Go. Triode Grid Go to Grid Go. Input (Signal). Output (Mixer).	0.10 μμf. Max. 0.35 μμf. Max. 1.0 μμf. 5.0 μμf.
Heptode Grid G to Plate. Heptode Grid G to Triode Plate. Heptode Grid G to Grid Go. Triode Grid Go to Grid Go. Triode Grid Go to Triode Plate Input (Signal). Output (Mixer). Input (Oscillator).	0.10 μμf. Max. 0.35 μμf. Max. 1.0 μμf. 5.0 μμf. 8.0 μμf. 7.0 μμf. 3.5 μμf.
Heptode Grid G to Plate. Heptode Grid G to Triode Plate. Heptode Grid G to Grid Go. Triode Grid Go to Grid Go. Input (Signal). Output (Mixer).	0.10 μμf. Max. 0.35 μμf. Max. 1.0 μμf. 5.0 μμf. 8.0 μμf. 7.0 μμf. 3.5 μμf.

TYPICAL OPERATION


Heater Voltage	6.3	6.3 Volts
Heater Current	300	300 Ma.
Heptode Plate Voltage	100	250 Volts
Heptode Screen Voltage	100	100 Volts
Oscillator Plate Voltage (Triode)	100	250 † Volts
Heptode Control Grid Voltage	-2	-2 Volts
Self-Bias Resistor	240	195 Ohms
Oscillator Grid Resistor	50000	50000 Ohms
Heptode Plate Current	1.9	1.8 Ma.
Heptode Screen Current	8.0	3.0 Ma.
Oscillator Plate Current (Triode)	3.0	5.0 Ma.
Oscillator Grid Current (Triode)	0.3	0.4 Ma.
Heptode Plate Resistance	0.5	1.25 Megohms
Conversion Conductance	500	$525 \ \mu mhos$
Conversion Conductance (Heptode Grid -21 Volts)	2	2 µmhos
Total Cathode Current	8.2	10.2 Ma.
†Applied through a 20,000 ohm dropping resistor	properly	by-passed.

TRIODE CHARACTERISTICS


Heater Voltage	6.3 Volts
Plate Voltage	100 Volts
Grid Voltage	0 Volts
Plate Current	6.5 Ma.
Plate Resistance	11000 Ohms
Mutual Conductance	
Amplification Factor	18

APPLICATION

Sylvania Type 7S7 is a triode heptode tube designed for converter service. The triode section serves as the oscillator and is internally coupled to the heptode which serves as the mixer. This construction provides minimum frequency drift compared to other conversion methods. Type 7S7 is similar to Type 7J7 except for improved triode characteristics and higher conversion conductance.

(Cont'd) 757

7V7 Sylvania Type

SHARP CUT-OFF RF PENTODE

8V-L-5

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb	T-9
Maximum Overall Length	225/2"
Maximum Seated Height	21/2"
Mounting Position	Any
	-

RATINGS

Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage	300 Volts
Maximum Screen Voltage §	150 Volts
Maximum Screen Supply Voltage	300 Volts
Maximum Plate Dissipation.	4.0 Watts
Maximum Screen Dissipation	0.8 Watt
Minimum Self-Bias Resistor	
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
Child to Plate	0.009

Grid to Plate.		x.
Input	9.5 µµf.	
Output	6.5 µµf.	
#With 15/ " diamatan shield (DMA Std	202) composted to esthede	

TYPICAL OPERATION

\$0	ondition 1	§Condition 2
Heater Voltage AC or DC	6.3	6.3 Volts
Heater Current	450	450 Ma.
Plate Voltage	800	300 Volts
Screen Supply Voltage	150	300 Volts
Screen Series Resistor		40000 Ohms
Suppressor (Grid 4) and Pin 5	0	0 Volt
Self-Bias Resistor	160	160 Ohms
Plate Current	10	10 Ma.
Screen Current	3.9	3.9 Ma.
Plate Resistance	0.3	0.3 Megohms
Mutual Conductance	5800	5800 µmhos
Grid Voltage for 10 µa. Plate Current.	-8.0	-16 Volts

Sconditions 1 and 2 represent operation with fixed screen supply and with series resistor, respectively. Condition 2 gives an extended cut-off characteristic. When a screen supply in excess of 150 volts is used a series dropping resistor must be used to limit screen voltage to 150 volts when the plate current is at its rated value of 10 milliamperes.

APPLICATION

Sylvania Type 7V7 is a cathode type pentode having low grid-plate capacity and high mutual conductance. It is identical to type 7W7 except for minor changes which make type 7W7 superior at high frequencies. The same curve data may be used for either type. Due to the low bias requirement, self-bias should be used and crist encoder a chould be limited to 0.25 memory

Due to the low bias requirement, self-bias should be used and grid circuit resistances should be limited to 0.25 megohm for fixed screen supply while series drop screen supplies permit a maximum grid circuit resistance of 0.5 megohm.

7W7 Sylvania Type

SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

BaseBulb	T-9
Maximum Overall Length	225/2
Maximum Seated Height	2¼″ Any

(Cont'd) 7W7

RATINGS

Heater Voltage AC or DC (Nominal)	7.0 Volta
Maximum Plate Voltage	300 Volts
Maximum Screen Voltage §	150 Volts
Maximum Plate Dissipation	4.0 Watts
Maximum Screen Dissipation	0.8 Watt
Maximum Heater-Cathode Voltage	90 Volts
Direct Interelectrode Capacitances:*	
· •	0.002 uuf. Max.
Grid to Plate	
· •	9.5 µµ1.

TYPICAL OPERATION

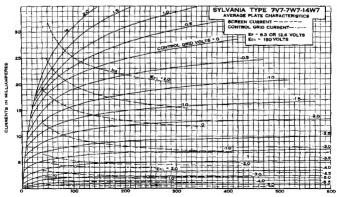
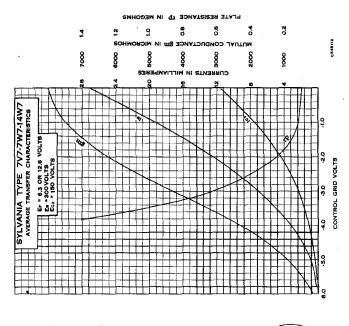
	Condition 1	§Condition 2
Heater Voltage AC or DC		6.3 Volts
Heater Current	450	450 Ma.
Plate Voltage	300	300 Volts
Screen Supply	150	300 Volts
Screen Series Resistor		40000 Ohms
Suppressor	Connected	to Cathode
Self-Bias Resistor	160	160 Ohms
Plate Current	10.0	10.0 Ma.
Screen Current	3.9	3.9 Ma.
Plate Resistance	0.3	0.3 Megohm
Mutual Conductance	5800	5800 μ mhos
Grid Voltage for 10 µa. Plate Current Approx.	8.0	-16 Volts

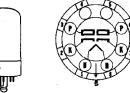
§Conditions 1 and 2 represent operation with fixed screen supply and with series screen dropping resistor respectively. Note that condition 2 gives an extended cut-off characteristic giving better control of gain when bias gain control is used. When a screen supply voltage in excess of 150 volts is used, a series screen dropping resistor must be employed to limit screen voltage to 150 volts with plate current at rated value of 10 ma.

APPLICATION

Sylvania Type 7W7 is a cathode type RF pentode of Lock-In construction having high mutual conductance with exceptionally low grid-plate capacity. These characteristics make this tube especially well suited for use in broad-band amplifiers, and in high-frequency applications. Degeneration due to common coupling in the cathode circuit

Degeneration due to common coupling in the cathode circuit can be reduced with this tube by proper use of the two cathode leads. It has been found that as an RF amplifier at 75 megacycles or higher, optimum input and output resistance can be obtained by returning input circuits to pin No. 4, and output circuits, including heater and screen, to pin No. 7.


PLATE VOLTS

7W7 (Cont'd)

7X6 Sylvania Type

FULL-WAVE RECTIFIER

7AJ-L-0

PHYSICAL SPECIFICATIONS

0

Base	Lock-In 8 Pin
Bulb	T- 9
Maximum Overall Length	35/2"
Maximum Seated Height	25%
Mounting Position	Any

RATINGS

TYPICAL OPERATION

Heater Voltage	6.3 Volts 1.2 Amperes
For other rating, operation and application data, refer to Sylvania	Type 50X6.

Sylvania Type

8BZ-L

PHYSICAL SPECIFICATIONS

O

Lase	ock-in 8 Pin
Bulb	. T-9
Maximum Overall Length	81/2
Maximum Seated Height	. 25%
Mounting Position	. Any

RATINGS

Heater Voltage AC or DC (Nominal)	7.0 Volts
Maximum Plate Voltage	300 Volts
Maximum Heater-Cathode Voltage	90 Volts 1.0 Ma.
Diode Current at 5 Volts (Minimum)	1.8 Ma.

TYPICAL OPERATION

Heater Voltage	6.3	6.3 Volts
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Grid Voltage	0	-1.0 Volt
Amplification Factor	85	100
Mutual Conductance	1000	1500 µmhos
Plate Resistance		67000 Ohms
Plate Current	1.2	1.9 Ma.

APPLICATION

Sylvania Type 7X7 is a double diode high-mu triode. It differs from other duodiode triodes by having diode No. 2 a completely separate unit except for the common heater. This difference allows this tube to be used in applications which require complete separation of the diode units.

7Y4 Sylvania Type

FULL WAVE RECTIFIER

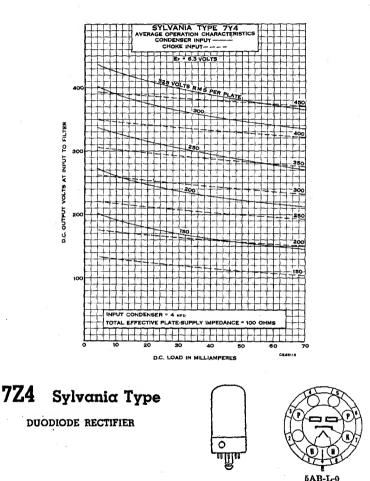
5AB-L-0

PHYSICAL SPECIFICATIONS

BaseBulb	•••	. Loci	k-In 8 Pin T-9
Maximum Overall Length			225/2
Maximum Seated Height		 	2 1⁄4 * Any

RATINGS

Heater Voltage (Nominal) AC or DC	7.0 Volts
Maximum RMS Plate Voltage Condenser Input	325 Volts
Maximum RMS Plate Voltage Choke Input	450 Volts
Maximum Peak Inverse Voltage	1250 Volts
Maximum DC Heater-Cathode Voltage	450 Volts
Maximum Peak Plate Current	210 Ma.
Maximum DC Output Current	70 Ma.
DC Voltage Drop at 70 Ma. Per Plate	22 Volts


TYPICAL OPERATION

	Condenser Input	Choke Input
Heater Voltage	6.3	6.3 Volts
Heater Current	500	500 Ma.
RMS Plate Voltage		450 Volts
DC Output Current	70	70 Ma.
Plate Supply Impedance* (Minimum per Plate)	150	Ohms
Minimum Input Choke Value		10 Henrys
*When greater than 40 µfd input filter conden		
increase minimum plate supply impedance.	-	-

7Y4 (Cont'd)

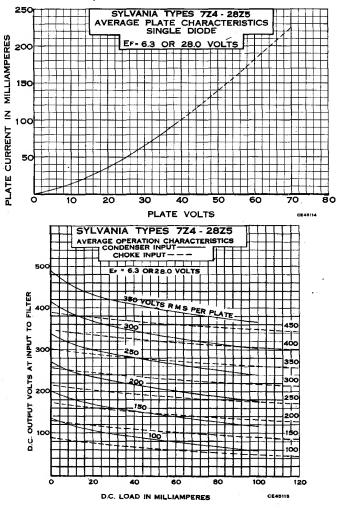
APPLICATION

Sylvania Type 7Y4 is a full-wave cathode heater type rectifier tube of Lock-In construction. It is designed for service in small auto and AC receivers. It is similar to the older 6X5GT and 84 but is smaller physically and is considerably more rugged due to the Lock-In construction. Conventional circuits such as used with the older types, are entirely suitable for use with this tube.

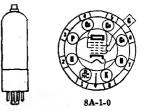
PHYSICAL SPECIFICATIONS

Base		Lock-In 8 Pin	
Bulb		T_9	
Maximum Overall Length Maximum Seated Height Mounting Position			
Maximum Seated Height		····· 2 _. 5%*	
Mounting Position	• • • • • • • • • • • • • • • • • • • •	Any Any	
BATINGS			

RATINGS


neater voltage AC or DC (Nominal)	7.0 Volts
Maximum AC Plate Voltage (RMS Per Plate) Condenser Input.	325 Volts
Maximum AC Plate Voltage (RMS Per Plate) Choke Input	450 Volts
Maximum Peak Inverse Voltage	1250 Volts
Maximum DC Heater-Cathode Voltage	450 Volts
Maximum Steady State Peak Plate Current Per Plate	300 Ma.
DC Voltage Drop at 100 Ma. Per Plate	40 Volts
Maximum DC Output Current	100 Ma.

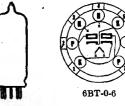
TYPICAL OPERATION


Condenser Input to Filter	
Heater Voltage AC or DC	6.3 Volts
Heater Current	.900 Ampere
AC Plate Voltage (RMS per Plate)	325 Volts
DC Output Current	100 Ma.
Plate Supply Impedance (Per Plate) §	75 Ohms
Choke Input to Filter	
	6.3 Volts
Heater Current 0	.900 Ampere
AC Plate Voltage (RMS Per Plate)	450 Volts
DC Output Current	100 Ma.
Minimum Value of Input Choke	6 Henrys
When a filter condenser larger than 40 mfds. is used, additional	plate supply
impedance may be required.	

APPLICATION

Sylvania Type 7Z4 is a full-wave cathode type rectifier of Lock-In construction providing a rugged, compact tube. This tube is designed for rectifier service in AC or auto receivers which require a greater load current than can be supplied by type 7Y4. The increased tube drop gives an additional safety factor with power supplies of low impedance. Conventional circuits may be used.

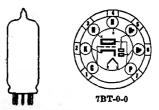
12A8^{GT} Sylvania Type PENTAGRID CONVERTER



RATINGS AND OPERATION

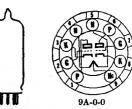
For other ratings, operation and application data, refer to corresponding Type 6A8GT which is identical except for heater ratings.

12AL5 Sylvania Type


DUODIODE

RATINGS AND OPERATION

12AT6 Sylvania Type


DUODIODE HIGH MU TRIODE

RATINGS AND OPERATION

12AT7 Sylvania Type

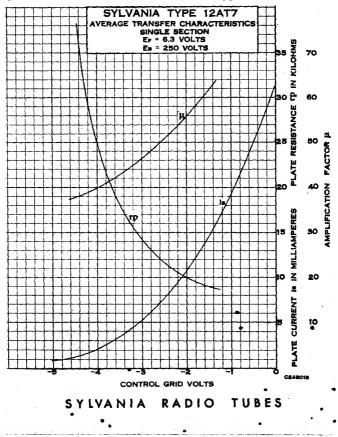
DUOTRIODE

PHYSICAL SPECIFICATIONS

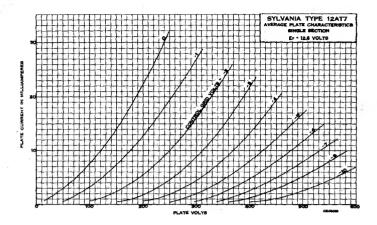
Base	11	Button 9 Pin
Bulb Maximum Overall Length		T-61/2
Maximum Seated Height		111/4″
Mounting Position	•••	Any

(Cont'd) 12

RATINGS EACH TRIODE UNIT

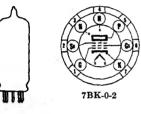

		Series	Parallel
Heater Voltage. Heater Current. Maximum Heater-Cathode Voltage	.	150 90	6.3 Volts 300 Ma. 90 Volts
Maximum Plate Voltage Maximum Plate Dissipation		300	300 Volts 2.5 Watts
Direct Interelectrode Capacitances:*			
	Triode No	.1† T	riode No. 2†
Grounded Cathode Operation Grid to Plate	. 1.5 . 2.2 . 0.5	.005 0.4	1.5 μμf. 2.2 μμf. 0.4 μμf. μμf. Max. μμf. Max. 2.4 μμf.
Plate to Cathode Input Output TTriode 1 has the plate connected to Pin No. 6.	. 4.6 . 1.8		0.2 μμf. 4.6 μμf. 1.8 μμf.

TYPICAL OPERATION CLASS A1 AMPLIFIER - EACH TRIODE UNIT


Heater Voltage. Heater Current. Plate Voltage. Grid Voltage. Cathode Bias Resistor Plate Resistance (Approx). Mutual Conductance. 12.6 or 150 or 6.3 300 Volts Ma. 250 Volts -2 Volts 200 Ohms 100 180 -1 270 90 ... 15,000 10,900 Ohms .400 6600 5500 µmhos 60 4000 Amplification Factor. Plate Current. Grid Voltage for Ib = 10 μa (Approx.)..... 60 62 10.0 Ma. -12 Volts 3.7 11.0 -5 _8

APPLICATION

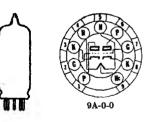
Sylvania Type 12AT7 is a miniature duotriode designed for use in compact equipment requiring a grounded-grid R.F. amplifier at frequencies up to 300 mc. The center tapped heater permits use on either 6.3 volt or series type heater circuits.



12AT7 (Cont'd)

SHARP CUT-OFF RF PENTODE

RATINGS AND OPERATION


 Heater Voltage
 12.6 Volts

 Heater Current
 150 Ma.

 For other rating, operation, and application data, refer to corresponding Type 6AU6.

12AU7 Sylvania Type

DUOTRIODE

PHYSICAL SPECIFICATIONS

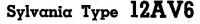
BaseBulb Bulb Maximum Overall Length Maximum Seated Height. Mounting Position		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
RATINGS (Each Triode)		
	Series	Parallel
Heater Voltage AC or DC	12.6	6.3 Volts
Heater Current	150	300 Ma.
Maximum Plate Voltage	300	300 Volts
Maximum Plate Dissipation	2,75	2.75 Watts
Maximum Cathode Current	20	20 Ma.
Maximum Peak Heater-Cathode Voltage	180	180 Volts
Maximum Grid-Circuit Resistance		
For Cathode Bias	1.0	1.0 Megohm
For Fixed Bias	0.25	0.25 Megohm

1 . J . M.

Direct Interelectrode Capacitances:*

	Triode No. 1	Triode No. Z
Grid to Plate	1.5	1.5 µµf.
Grid to Cathode	1.6	1.6 µµf.
Plate to Cathode	0.50	0.35 µµf.
*Without external shield.		
NT.4., PL.1. NT. 4.1., 41 1.4.		ala Mar C

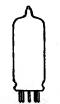
Note:-Triode No. 1 has the plate connected to pin No. 6.


TYPICAL OPERATION **CLASS A1 AMPLIFIER**

Heater Voltage		
Series		12.6 Volts
Parallel	6.3	6.3 Volts
Heater Current		
Series	150	150 Ma.
Parallel	300	300 Ma.
Plate Voltage		250 Volts
Grid Voltage		-8.5 Volts
Amplification Factor	19.5	17
Amplification Factor	6250	7700 Ohms
Transconductance.		2200 µmhos
Plate Current		10.5 Ma.
	11.0	10.0 Mu.

APPLICATION

Sylvania Type 12AU7 is a double triode in the T61/2 miniature construction providing enough terminals to permit the center tap of the heater being brought out. This makes possi-ble the parallel connection for use in AC sets or a series con-nection for use in 150 Ma. AC-DC service. For curve and resistor coupled amplifier data reference should be made to Type 6C4.


DUODIODE TRIODE

RATINGS AND OPERATION

Heater Voltage AC or DC. 12.6 Volts 150 Ma. For other data refer to corresponding Type 6AV6, which is

identical except for heater ratings.

Sylvania Type 12AV7

DUOTRIODE

..... Small Button 9 Pin

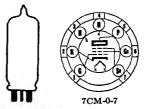
.

-61/2

PHYSICAL SPECIFICATIONS

Bas Maximum Overall Length. Maximum Seated Height. Mounting Position.

12AV7 (Cont'd)


RATINGS

	Series	Parallel
Heater Voltage AC or DC	. 12.6	6.3 Volts
Heater Current		450 Ma.
Maximum Plate Voltage		300 Volts
Maximum Plate Dissipation (each section)		2.7 Watts
Maximum Negative DC Control Grid Voltage		-50 Volts
Maximum Heater-Cathode Voltage		90 Volts
Direct Interelectrode Capacitances:		ith Shield # 315
		1.9 μμf.
Grid to Plate (each section)		2.0
Input (each section)		3.2 uµt.
Output (section #1)		1.3 µµf.
(section #2)	. 0.4	1.6 µµf.
Heater to Cathode (each section)	3:8	4.0 μμf.
Grounded Grid		
Input (each section)	. 6.9	7.0 μμf.
Output (section #1)	2.0	2.8 $\mu\mu f$.
(section #2)	. 2.0	3.2 µµf.
Plate to Cathode (each section)	. 0.24	0.23 µµf.
NOTE:-Triode No. 1 has the plate connected to r	oin No. 6.	
TYPICAL OPERATION	ON	
CLASS A1 AMPLIFIER (Each	Section)	
Heater Voltage		
Series,	. 12.6	12.6 Volts
		6.3 Volts
Parallel	. 0.a	0.0 VOIts
Heater Current	005	007 34-
Series	. 225	225 Ma.

Parallel	450	450 Ma.
Plate Voltage	100	150 Volts
Plate Current	9.0	18 Ma.
Cathode Bias Resistor	120	56 Ohms
Plate Resistance	6.100	4.800 Ohms
Mutual Conductance	6,100	8,500 µmhos
Amplification Factor	37	41
Control Grid Voltage (approx.) for Ib = $10 \ \mu a$	-9	-12 Volts
control cital (citage (approxi) for is in pairies in	•	

12AW6 Sylvania Type

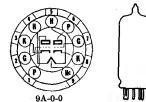
SHARP CUT-OFF PENTODE

PHYSICAL SPECIFICATIONS

Base	
Bulb	T-5½″
Maximum Overall Length	$2\frac{1}{8}''$
Maximum Seated Height	21/8" 17/8"
Mounting Position	Any

RATINGS

	Triode*	Pentode
Heater Voltage	12.6	12.6 Volts
Heater Current	150	150 Ma.
Maximum Plate Voltage	300	300 Volts
Maximum Screen Voltage		150 Volts
Maximum Screen Supply Voltage		300 Volts
Maximum Control Grid Voltage		
Negative		50 Volts
Positive	0	0 Volts
Maximum Plate Dissipation	2.5	2 Watts
Maximum Screen Dissipation		0.5 Watt
Maximum Peak Heater-Cathode Voltage	90	90 Volts
*Screen grid tied to plate and suppressor grid tied to	cathode.	
Direct Interelectrode Capacitances:*		
Grid to Plate		0.025f
Input.		. 6.5 μμf.
Output.		. 0.5 μμι. . 1.5 μμf.
**With no external shielding.	•••••••••••	. Ι.Ομμι.


(Cont'd) 12AW6

TYPICAL OPERATION CLASS A1 AMPLIFIER

PENTODE	CON	NECTION	
Heater Voltage	12.6	12.6	12.6 Volts
Heater Current	150	150	150 Ma.
Plate Voltage	100	125	250 Volts
Suppressor Voltage		Connected	to cathode at socket.
Screen Voltage	100	125	150 Volts
Cathode Bias Resistor	100	100	200 Ohms
Plate Resistance (Approx.)	0.3	0.5	0.8 Megohm
Transconductance	4750	5100	$5000 \mu mhos$
Grid Voltage for Plate Current of 10 µa	-5	6	-8 Volts
Plate Current	5.5	7.2	7 Ma.
Screen Current	1.6	2.1	2 Ma.
TRIODE CO			
Heater Voltage		12.6	12.6 Volts
Heater Current		150	150 Ma.
Plate Voltage		180	250 Volts
Cathode Bias Resistor		350	825 Ohms
Plate Resistance		7900	11,000 Ohms
Amplification Factor		45	42
Transconductance		5700	$3800 \ \mu mhos$
Plate Current		7.0	5.5 Ma.

APPLICATION

Sylvania Type 12AW6 is a miniature sharp cut-off pentode designed for use in compact AC-DC sets. This type is the same as Type 6AG5 except for the heater voltage and the separa-tion of the suppressor and cathode leads. For curve data ref-erence should be made to Type 6AG5.

12AX7 Sylvania Type

HIGH MU DUOTRIODE

į

PHYSICAL SPECIFICATIONS

BaseSmall Bu	tton 9-Pin
Bulb.	т-6¼″
Maximum Overall Length	23/16" 1 ¹⁵ /16"
Maximum Seated Height.	115/ "
Mounting Position	Anv
Mounting Position	Any

RATINGS**

Negative Bias Value	50 0	50 Volts
Positive Bias Value.	0	0 Volts
Maximum Peak Heater-Cathode Voltage Heater negative with respect to cathode	180 180	180 Volts 180 Volts
Direct Interelectrode Capacitances:*		
Grid to Plate 1.7 Grid to Cathode 1.6 Plate to Cathode 0.46 †Triode No. 1 and Triode No. 2 have their plates connected	•	Triode No. 2† 1.7 μμf. 1.6 μμf. 0.34 μμf. ins 6 and 1 re-

*Without external shield.

12AX7 (Cont'd)

TYPICAL OPERATION** CLASS A, AMPLIFIER

Heater Voltage	6.3	6.3 Volts
Heater Current	300	300 Ma.
Plate Voltage	100	250 Volts
Grid Voltage	-1	-2 Volts
Amplification Factor	100	100
Plate Resistance	80,000	62,500 Ohms
Transconductance	1250	$1600 \ \mu mhos$
Plate Current	0.5	1.2 Ma.
**Values are for each unit.		

APPLICATION

Sylvania Type 12AX7 is a high mu duotriode for use as a voltage amplifier or phase inverter in portable or compact radio equipment. The use of the 9 pin base allows connection to be made to the center tap of the heater permitting operation in parallel on 6 volt supplies or in series for AC-DC service. For typical curves and resistance coupled amplifier data, reference should be made to Sylvania Type 6BK6.

12AY7 Sylvania Type MEDIUM.MU DUOTRIODE

9A-0-0

PHYSICAL SPECIFICATIONS

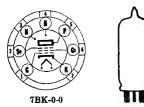
Base	ıre	Button 9 Pin
Bulb		`T-6¼″
Maximum Overall Length		21/6"
Maximum Seated Height		115/6"
Mounting Position		Any

RATINGS

Heater Voltage. Heater Current. Maximum Plate Voltage. Maximum Plate Dissipation	Series 12.6 0.15 300 1.5 10 90	Parallel 6.3 Volts 0.3 Ampere 300 Volts 1.5 Watts 10 Ma. 90 Volts
Grid to Plate Input. Output. *Without external shield.		1.3 μμf. 1.3 μμf. 0.6 μμf.

TYPICAL OPERATION

CLASS A AMPLIFIER (Each Section) Plate Voltage. 250 Volts Grid Voltage. 4.0 Volts Plate Current. 3.0 Ma.


Amplification Factor	40 1750 μmhos

RESISTANCE	COUPLED	AMPLIFIER	(Each section)
Heater Voltage** (AC	or DC)		6.3 Volts
Plate Supply Voltage.	· • • • • • • • • • • • • • • • • • • •		150 Volts
Plate Load Resistor	•••••	• • • • • • • • • • • • • • • • • • • •	
Cathode bypass Capac	vitor		40 uf.
Grid Resistor			0.1 Megohm
Voltage Gain		· · · · · · · · · · · · · · · · · · ·	12.5

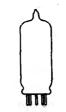
(Cont'd) 12AY7

APPLICATION

Sylvania Type 12AY7 is a medium-mu duotriode which is designed for use as an af amplifier. It is a low noise, low microphonic tube having a center tapped heater which permits operation from either 6.3 volt or 12.6 volt heater supply. It is recommended that the 12.6 volt connection be used to assure the low-hum operation for which Type 12AY7 was developed.

Sylvania Type 12BA6

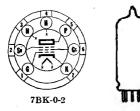
REMOTE CUT-OFF RF PENTODE


RATINGS AND OPERATION

 Heater Voltage AC or DC.
 12.6 Volts

 Heater Current.
 150 Ma.

 For other rating, operation and application data, refer to corresponding Type 6BA6.

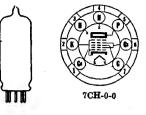


Sylvania Type 12BA7

HEPTODE CONVERTER

RATINGS AND OPERATION

identical except for heater ratings.


Sylvania Type 12BD6

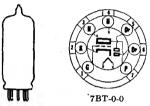
REMOTE CUT-OFF RF PENTODE

RATINGS AND OPERATION

12BE6 Sylvania Type

HEPTODE CONVERTER

RATINGS AND OPERATION


 Heater Voltage AC or DC.
 12.6 Volts

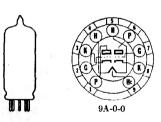
 Heater Current.
 150 Ma.

 For other rating, operation and application data, refer to corresponding Type 6BE6.

12BF6 Sylvania Type

DUO-DIODE TRIODE

RATINGS AND OPERATION


 Heater Voltage AC or DC
 12.6 Volts

 Heater Current
 150 Ma.

For other data refer to corresponding Type 6BF6 which is identical except for heater ratings. Curves and resistance coupled amplifier data may be found by reference to Type 7E6.

12BH7 Sylvania Type

MEDIUM-MU DUOTRIODE

PHYSICAL SPECIFICATIONS

Base	Small	Button 9 Pin
Bulb		T-6½
Maximum Overall Length		2%
Maximum Seated Height	• • • • • • • • • •	2 % 8"
Mounting Position		Any

RATINGS*

CLASS A1 AMPLIFIER

Heater Voltage AU or DU	
Series	12.6 Volts
Parallel	6.3 Volts
Maximum Plate Voltage	300 Volts
Maximum Plate Dissipation (Each Unit)	
Maximum Cathode Current (Each Unit)	20 Ma.
Maximum Peak Heater-Cathode Voltage	180 Volts
Maximum Grid Circuit Resistance	
For Self Bias.	2.5 Megohms
For Fixed Bias	1.0 Megohm

(Cont'd) 12BH7

VERTICAL DEFLECTION AMPLIFIER

Maximum DC Plate Voltage. Maximum Peak Positive Pulse Plate Voltage # Maximum DC Negative Grid Voltage.	500 Volts 1500 Volts 50 Volts
Maximum Peak Negative Pulse Grid Voltage #	220 Volts
Maximum Cathode Current (Each Unit)	20 Ma.
Maximum Plate Dissipation (Each Unit) #	5 Watts
Maximum Peak Heater-Cathode Voltage	180 Volts
Maximum Grid Circuit Resistance	
For Self Bias	2.5 Megohms
For Fixed Bias	1.0 Megohm
*Values given are for each section. #Absolute maximum value not to be exceeded under any conditi	

Direct Interelectrode Capacitances:

	. Triode N	No. 1*	Triode	• No. 2*
	+	††	†	††
Grid to Plate	2.4	2.4	2.4	2.4 uuf.
Input		3.0	3.0	3.0 µµf.
Output	2.0	0.8	2.6	0.8 µµf.
tWith a 1/8" diameter shield (RMA	Stdrs. 315)	connected t	to cathod	le of unit
under test.				
††Without external shield .	•			
*Triode No 1 and Triode No 2 has	ze their nla	tes connecte	d to nins	6 and 1

respectively.

TYPICAL OPERATION CLASS A1 AMPLIFIER*

Heater Voltage	12.6	or	6.3 Volts
Heater Current	300	or	600 Ma.
Plate Voltage	85		250 Volts
Grid Voltage	0		10.5 Volts
Amplification Factor	21		17
Mutual Conductance (Each Unit)	6200		$3100 \ \mu mhos$
Plate Current (Each Unit)	20		11.5 Ma.

VERTICAL DEFLECTION AMPLIFIER

Heater Voltage Plate Voltage Cathode Bias Resistor (Variable)	12.6	or	6.3 Volts 350 Volts 560 Ohms
Signal Voltage Peak to Peak Sawtooth Component (approx.) Negative Peaking Component			25 Volts 32 Volts
Plate Current Peak Positive-Pulse Output Voltage			16 Ma. 670 Volts
Peak to Peak Sawtooth Output Voltage			230 Volts

APPLICATION

Sylvania Type 12BH7 is a duotriode designed for use as a vertical deflection amplifier in television receivers using picture tubes which require wide deflection angles. The 12BH7 may also be used in Class A_1 amplifier applica-

tions.

12**BN**6 Sylvania Type

GATED BEAM DISCRIMINATOR

RATINGS AND OPERATION

12.6 Volts 150 Ma. Heater Voltage AC or DC. . Heater Current.....

For other data, refer to corresponding Type 6BN6 which is identical except for heater ratings.

12F5^{GT} Sylvania Type

HIGH-MU TRIODE

RATINGS AND OPERATION

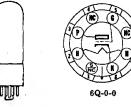
For other data, refer to corresponding Type 6F5 or 6F5GT which is identical, except for heater ratings.

12H6 Sylvania Type

TWIN DIODE

7Q-1-1

RATINGS AND OPERATION

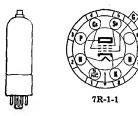

 Heater Voltage AC or DC.....
 12.6 Volts

 Heater Current......
 150 Ma.

For other data, refer to corresponding Type 6H6 which is identical except for heater ratings.

12J5^{GT} Sylvania Type

MEDIUM-MU TRIODE



RATINGS AND OPERATION

For other data, refer to corresponding Type 6J5GT which is identical except for heater ratings.

12J7^{GT} Sylvania Type

SHARP CUT-OFF RF PENTODE

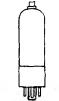
RATINGS AND OPERATION

For other data, refer to corresponding Type 6J7GT which is identical except for heater ratings.

REMOTE CUT-OFF RF PENTODE

RATINGS AND OPERATION

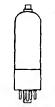
 Heater Voltage AC or DC.
 12.6 Volts


 Heater Current.
 150 Ma.

 For other data, refer to corresponding Type 6K7GT which

is identical except for heater ratings.

7R-1-8



Sylvania Type 12K8^{GT}

TRIODE HEXODE CONVERTER

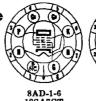
RATINGS AND OPERATION

Sylvania Type 12Q7^{GT}

DUODIODE HIGH-MU TRIODE

RATINGS AND OPERATION

For other data, refer to corresponding Type 6Q7GT which is identical except for heater ratings.


Sylvania Type 12S8^{GT}

TRIPLE DIODE TRIODE

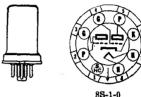
RATINGS AND OPERATION

12SA7^{GT} Sylvania Type

PENTAGRID CONVERTER

761

12SA7

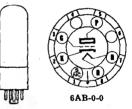

RATINGS AND OPERATION

Heater Voltage AC or DC... 12.6 Volts Heater Current.... 150 Ma.

For other data, refer to corresponding Type 6SA7GT which is identical except for heater ratings.

12SC7 Sylvania Type

DOUBLE TRIODE AMPLIFIER

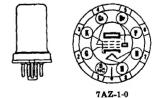


RATINGS AND OPERATION

12.6 Volts 150 Ma. For other data, refer to corresponding Type 6SC7 which is identical except for heater ratings.

12SF5^{GT} Sylvania Type

HIGH-MU TRIODE


RATINGS AND OPERATION

12.6 Volts 150 Ma.

For other data, refer to corresponding Type 6SF5GT which is identical except for heater ratings.

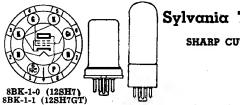
12SF7 Sylvania Type

DIODE REMOTE CUT-OFF RF PENTODE

RATINGS AND OPERATION

12.6 Volts 150 Ma.

For other data, refer to corresponding Type 6SF7 which is identical except for heater ratings.

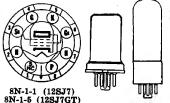


Sylvania Type 12SG7

SEMI-REMOTE CUT-OFF RF PENTODE

RATINGS AND OPERATION

Heater Voltage AC or DC..... 12.6 Volts 150 Ma. Heater Current..... For other data, refer to corresponding Type 6SG7 which is identical except for heater ratings.

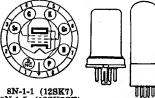

Sylvania Type 12SH7^{GT}

SHARP CUT-OFF RF PENTODE

RATINGS AND OPERATION

12.6 Volts 150 Ma.

For other data, refer to corresponding Type 6SH7GT, which is identical except for heater ratings.



Sylvania Type 12SJ7^{GT}

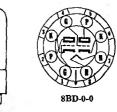
SHARP CUT-OFF RF PENTODE

RATINGS AND OPERATION

12.6 Volts 150 Ma. For other data, refer to corresponding Type 6SJ7GT, which is identical except for heater ratings.

8N-1-1 (12SK7) 8N-1-5 (12SK7GT)

Sylvania Type 12SK7GT **REMOTE CUT-OFF RF PENTODE**


RATINGS AND OPERATION

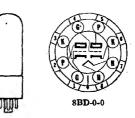
Heater Voltage AC or DC..... 12.6 Volts Heater Current..... 150 Ma.

For other data, refer to corresponding Type 6SK7GT which is identical except for heater ratings.

12SL7^{GT} Sylvania Type

DOUBLE TRIODE AMPLIFIER

RATINGS AND OPERATION


 Heater Voltage AC or DC.....
 12.6 Volts

 Heater Current......
 150 Ma.

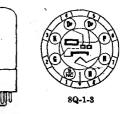
For other data, refer to corresponding Type 6SL7GT which is identical except for heater ratings.

12SN7^{GT} Sylvania Type

DOUBLE TRIODE AMPLIFIER

RATINGS AND OPERATION

 Heater Voltage AC or DC.
 12.6 Volts


 Heater Current.
 300 Ma.

 For other data, refer to corresponding Type 6SN7GT which

is identical except for heater ratings.

12SQ7^{GT} Sylvania Type

DUODIODE HIGH-MU TRIODE

RATINGS AND OPERATION

 Heater Voltage AC or DC.
 12.6 Volts

 Heater Current.
 150 Ma.

For other data, refer to corresponding Type 6SQ7GT which is identical except for heater ratings.

12SR7 Sylvania Type

DUODIODE MEDIUM-MU TRIODE

RATINGS AND OPERATION

 Heater Voltage AC or DC.
 12.6 Volts

 Heater Current.
 150 Ma.

For other data, refer to corresponding Type 6SR7 which is identical except for heater ratings.

Sylvania Type 14A4

MEDIUM-MU TRIODE

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb	T-9
Maximum Overall Length Maximum Seated Height	225/32
Maximum Seated Height	21/4"
Mounting Position	Any

RATINGS

Heater Voltage AC or DC (Nominal) 14.0 Volts

OPERATION	
Heater Voltage AC or DC	

For other rating, operation and application data, refer to Sylvania Lock-In Type 7A4.

Sylvania Type 14A5

BEAM POWER AMPLIFIER

6AA-L-0

PHYSICAL SPECIFICATIONS

Direct Interelectrode Capacitances:*	
Grid to Plate	0.4 µµf.
Input Output	6.8 μμf. 7.0 μμf.

*With 15% diameter shield (RMA Std. 308) connected to cathode.

TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Voltage AC or DC			12.6 Volts
Heater Current			150 Ma.
Plate Voltage			250 Volts
Screen Voltage			
Grid Voltage §			-12.5 Volts
Self-Bias Resistor			
Peak AF Signal Voltage			
Plate Current Zero Signal			30 Ma.
Plate Current Maximum Sign	al		32 Ma.
Screen Current Zero Signal			
Screen Current Maximum Sig			
Plate Resistance			
Mutual Conductance			
Load Resistance			
Power Output			
Total Harmonic Distortion			
The DC resistance in the			
never exceed 0.5 megohm for			
noter choices and megonin for		a vit megoain for aneu	one operation.

14A7 Sylvania Type

REMOTE CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

BaseLoc	
Bulb	T-9
Maximum Overall Length	225.6
Maximum Seated Height	214"
Mounting Position	Any

RATINGS

OPERATION

 Heater Voltage AC or DC.
 12.6 Volts

 Heater Current.
 150 Ma.

For other rating, operation and application data, refer to Sylvania Lock-In Type 7A7.

14AF7 Sylvania Type

TWIN TRIODE AMPLIFIER

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb	T-9
Maximum Overali Length	225/0
Maximum Seated Height	2¼
Mounting Position	4 nv

RATINGS

Heater Voltage AC or DC (Nominal)..... 14.0 Volta

OPERATION

 Heater Voltage AC or DC.
 12.6 Volta

 Heater Current.
 150 Ma.

For other rating, operation and application data, refer to Sylvania Lock-In Type 7AF7.

14B6 Sylvania Type

DUODIODE HIGH-MU TRIODE

PHYSICAL SPECIFICATIONS

Base	
Bulb Maximum Overall Length	T-9 91547
Maximum Seated Height	21/4
Mounting Position	Any

RATINGS

Heater Voltage AC or DC (Nominal)..... 14.0 Volts

OPERATION

 Heater Voltage AC or DC.
 12.6 Volts

 Heater Current.
 150 Ma.

For other rating, operation and application data, refer to Sylvania Lock-In Type 7B6.

Sylvania Type 14B8

PENTAGRID CONVERTER

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulk	Т-9
Maximum Overall Length Maximum Seated Height	225,4
Maximum Seated Height	21/4
Mounting Position	Any
BATINGS	
Heater Voltage AC or DC (Nominal)	14.0 Volts
OPERATION	
Heater Voltage AC or DC	12.6 Volts
Heater Current	150 Ma.
For other rating, operation and application dat	ta, refer to

Sylvania Lock-In Type 7B8.

Sylvania Type 14C5

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb	T-9
Maximum Overall Length	
Maximum Seated Height	25%*
Mounting Position	Any
-	-

RATINGS

Heater Voltage AC or DC (Nominal)..... 14.0 Volts

OPERATION

Heater V	oltage AC	or DC.	 				12.6 Volts
Heater C	urrent	• • • • • • • • • •	 · · · · · · ·	• • • • • •		 • •	225 Ma.
_	-			-	·	-	-

For other rating, operation and application data, refer to Sylvania Lock-In Type 7C5.

Sylvania Type 14C7

SHARP CUT-OFF RF PENTODE

8V-L-5

PHYSICAL SPECIFICATIONS

 Base
 Lock-In 8 Pin

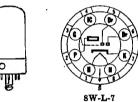
 Bulb
 T-9

 Maximum Overall Length
 $2^{25} \acute{a}'$

 Maximum Seated Height
 $2^{14}''$

 Mounting Position
 Any

14C7 (Cont'd)


RATINGS

Heater Voltage AC or DC (Nominal)		14.0 Volts
Maximum Plate Voltage		300 Volts
Maximum Screen Voltage		100 Volts
Maximum Screen Supply Voltage		300 Volts
Maximum Plate Dissipation		1.0 Watt
Maximum Screen Dissipation.		0.1 Watt
Minimum External Grid Bias.		0 Volt
Maximum Heater-Cathode Voltage	•••••••••••	90 Volts
······································	••••••	
Direct Interelectrode Capacitances:*		
Grid to Plate		
Input	• • • • • • • • • • • •	6.0 μμf.
Output. *With 1% diameter shield (RMA Std. 308) conr		6.5 μμf.
*With 1% diameter shield (RMA Std. 308) cont	nected to cath	ode.
······································		
TYPICAL OPERATION CLASS	A1 AMPL	IFIER
TYPICAL OPERATION CLASS	A1 AMPL 12.6	IFIER 12.6 Volts
TYPICAL OPERATION CLASS Heater Voltage. Heater Current.	A₁ ÄMPL 12.6 150	.IFIER 12.6 Volts 150 Ma.
TYPICAL OPERATION CLASS Heater Voltage	A ₁ ÄMPL 12.6 150 100	IFIER 12.6 Volts 150 Ma. 250 Volts
TYPICAL OPERATION CLASS Heater Voltage Heater Current. Plate Voltage Screen Voltage	A₁ AMPL 12.6 150 100 100	IFIER 12.6 Volts 150 Ma. 250 Volts 100 Volts
TYPICAL OPERATION CLASS Heater Voltage. Heater Current. Plate Voltage. Screen Voltage. Control Grid Voltage.	A 1 AMPL 12.6 150 100 100 -1.0	12.6 Volts 150 Ma. 250 Volts 100 Volts -3.0 Volts
TYPICAL OPERATION CLASS Heater Voltage. Heater Current. Plate Voltage. Screen Voltage. Control Grid Voltage. Self-Bias Resistor.	A ₁ AMPL 12.6 150 100 -1.0 130	IFIER 12.6 Volts 150 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms
TYPICAL OPERATION CLASS Heater Voltage Heater Current. Plate Voltage Sereen Voltage Control Grid Voltage. Self-Bias Resistor Suppressor Grid and Pin No. 5.	A 1 AMPL 12.6 150 100 -1.0 130 Connected to	.IFIER 12.6 Volts 150 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms 0 Cathode
TYPICAL OPERATION CLASS Heater Voltage. Heater Current. Plate Voltage. Screen Voltage. Control Grid Voltage. Self-Bias Resistor Suppressor Grid and Pin No. 5. Plate Current.	A 1 AMPI 12.6 150 100 -1.0 130 Connected to 5.7	IFIER 12.6 Volts 150 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms 0 Cathode 2.2 Ma.
TYPICAL OPERATION CLASS Heater Voltage Heater Current. Plate Voltage Control Grid Voltage Self-Bias Resistor. Suppressor Grid and Pin No. 5. Plate Current. Screen Current.	A 1 AMPI 12.6 150 100 -1.0 130 Connected to 5.7 1.8	.IFIER 12.6 Volts 150 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms Cathode 2.2 Ma. 0.7 Ma.
TYPICAL OPERATION CLASS Heater Voltage. Heater Current. Plate Voltage. Screen Voltage. Self-Bias Resistor Suppressor Grid and Pin No. 5. Plate Current. Streen Current. Plate Resistance (Approximate).	A 1 AMPI 12.6 150 100 -1.0 130 Connected to 5.7 1.8 400	.IFIER 12.6 Volts 150 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms 0 Cathode 2.2 Ma. 0.7 Ma. 1.0 Megohm
TYPICAL OPERATION CLASS Heater Voltage Heater Current. Plate Voltage Control Grid Voltage Self-Bias Resistor. Suppressor Grid and Pin No. 5. Plate Current. Screen Current.	A 1 AMPI 12.6 150 100 -1.0 130 Connected to 5.7 1.8	.IFIER 12.6 Volts 150 Ma. 250 Volts 100 Volts -3.0 Volts 1000 Ohms Cathode 2.2 Ma. 0.7 Ma.

Grid Bias for Approx. Plate Current Cut-Off -8.5 -8.5 Volts Data for use in Resistance Coupled Amplifiers may be obtained by referring to type 7C7 in appendix.

14E6 Sylvania Type

DUODIODE MEDIUM-MU TRIODE

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb	T-9
Maximum Overall Length	225.6"
Maximum Seated Height.	21/4"
Mounting Position	Any

RATINGS

For other rating, operation and application data, refer to Sylvania Lock-In Type 7E6. For diode load curve data, refer to that for Type 7B6.

14E7 Sylvania Type

DUODIODE PENTODE

PHYSICAL SPECIFICATIONS

Base Lock-In 8 Pir Bulb T-9	ł
Maximum Overall Length 2^{25}	
Maximum Seated Height	
RATINGS	
Heater Voltage AC or DC (Nominal) 14.0 Volts	
OPERATION	
Heater Voltage AC or DC	,
SYLVANIA RADIO TURES	

Sylvania Type 14F7

HIGH-MU DUO TRIODE

PHYSICAL SPECIFICATIONS

Base	ock-In 8 Pin
Bulb	. T-9
Maximum Overall Length	. 225/2"
Maximum Overall Length Maximum Seated Height	. 21/2"
Mounting Position	. Any

RATINGS

Heater Voltage AC or DC (Nominal)..... 14.0 Volts

OPERATION

For other rating, operation and application data, refer to Sylvania Type 7F7.

Sylvania Type 14F8

DOUBLE TRIODE

PHYSICAL SPECIFICATIONS

Base	. Lock-In	8-Pin
Bulb		Г-9
Maximum Overall Length	2	34"
Maximum Seated Height	1	34"
Mounting Position	1	Any

RATINGS

TYPICAL OPERATION

 Heater Voltage AC or DC.
 12.6 Volts

 Heater Current.
 150 Ma.

For other rating, operation and application data, refer to Sylvania Type 7F8.

Sylvania Type 14H7

SEMI-REMOTE CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

BaseBulb	Lock-In 8 Pin		
Bulb	Т-9		
Maximum Overall Length	223/2		
Maximum Seated Height	21/4"		
Mounting Position	Any		
RATINGS			
Heater Voltage AC or DC (Nominal)	14.0 Volts		
OPERATION			
Heater Voltage AC or DC	12.6 Volts 150 Ma.		
For other rating, operation and application dat Sylvania Lock-In Type 7H7.	a, refer to		

14J7 Sylvania Type

TRIODE HEPTODE CONVERTER

..... 14.0 Volts

PHYSICAL SPECIFICATIONS

Base		
Bulb		T-9
Maximum Overall Length		215/2"
Maximum Overall Length		21/2"
Mounting Position		Any

RATINGS

Heater Voltage AC or DC (Nominal).....

OPERATION

Heater Voltage AC or DC	12.6 Volts
Heater Current	150 Ma.

For other rating, operation and application data, refer to Sylvania Lock-In Type 7J7.

14N7 Sylvania Type

MEDIUM-MU DUO TRIODE

8AC-L-0

PHYSICAL SPECIFICATIONS

BaseL	
Bulb	. T-9
Maximum Overall Length	. 235.4*
Maximum Seated Height	. 2 ¹⁵ /12" . 2 ⁵ /8"
Mounting Position	. Any

RATINGS

Heater Voltage AC or DC (Nominal) 1	14.0	Volt	s
-------------------------------------	------	------	---

OPERATION

12.6 Volts 300 Ma. For other rating, operation and application data, refer to Sylvania Lock-In Type 7N7.

1407 Sylvania Type

PENTAGRID CONVERTER

PHYSICAL SPECIFICATIONS

Bulb		Т-9
	RATINGS	•

Heater Voltage AC or DC (Nominal)..... 14.0 Volts

OPERATION

12.6 Volts 150 Ma. For other rating, operation and application data, refer to Sylvania Lock-In Type 7Q7.

8AE-L-

14**R**7 Sylvania Type

DUODIODE PENTODE

PHYSICAL SPECIFICATIONS

Base	
Bulb	T-9
Maximum Overall Length	2 ²⁵ /2"
Maximum Seated Height	21/4"
Mounting Position	Any

RATINGS

Heater Voltage AC or DC (Nominal) 14.0 Volts

OPERATION

Heater Voltage AC or DC. 12.6 Volts 150 Ma.

For other rating, operation and application data, refer to Lock-In Type 7R7. For diode load current data, see Type 7B6.

14S7 Sylvania Type

TRIODE HEPTODE CONVERTER

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb	T-9
Maximum Overall Length	225/22"
Maximum Seated Height	21/4*
Mounting Position	Any

RATINGS

Heater Voltage AC or DC (Nominal) 14.0 Volts

OPERATION

 Heater Voltage AC or DC.
 12.6 Volts

 Heater Current.
 150 Ma.

For other rating, operation and application data, refer to Sylvania Lock-In Type 7S7.

14W7 Sylvania Type

SHARP CUT-OFF RF PENTODE

PHYSICAL SPECIFICATIONS

Base	ock-In 8 Pin
Bulb	. T-9
Maximum Overall Length	. 2 ²⁵ /32
Maximum Seated Height	. 21/4"
Mounting Position	

RATINGS

Heater Voltage AC or DC (Nominal).... 14.0 Volts

OPERATION

12.6 Volts 225 Ma. For other rating, operation and application data, refer to Sylvania Lock-In Type 7W7.

14X7 Sylvania Type

DUO-DIODE HI-MU TRIODE

PHYSICAL SPECIFICATIONS

Base	. Lock-In 8 Pin	
Bulb	T-9	
Maximum Overall Length Maximum Seated Height Mounting Position	35/2"	
Maximum Seated Height	2 %	
Mounting Position	Any	
DATINGO		

RATINGS

Heater Voltage AC or DC (Nominal)..... 14.0 Volts

OPERATION

 Heater Voltage AC or DC.
 12.6 Volts

 Heater Current.
 150 Ma.

 For other rating, operation and application data, refer to Sylvania Lock-In Type 7X7.

14Y4 Sylvania Type

DUODIODE RECTIFIER

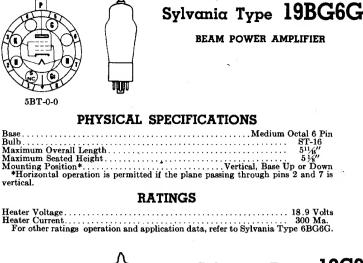
PHYSICAL SPECIFICATIONS

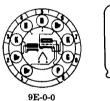
Base	. Lock-In 8 Pin
Bulb	T-9
Maximum Overall Length	21%
Maximum Seated Height	21/4"
Mounting Position	Any

RATINGS

Heater Voltage AC or DC (Nominal)	14.0 Volts
Maximum AC Plate Voltage (RMS per Plate, Condenser Input)	325 Volts
Maximum AC Plate Voltage (RMS, Choke Input)	450 Volts
Maximum Peak Inverse Voltage	1250 Volts
Maximum DC Heater-Cathode Voltage	450 Volts
Maximum Steady State Peak Plate Current Per Plate	210 Ma.
Tube Voltage Drop at 70 Ma. DC Per Plate	22 Volts
Maximum Output Current	70 Ma.

TYPICAL OPERATION FULL WAVE RECTIFIER CONDENSER INPUT TO FILTER


Heater Voltage AC or DC Heater Current	12.6 Volts 0.300 Ampere
AC RMS Voltage per Plate DC Output Current	325 Volts
Plate Supply Impedance per Plate §	150 Ohms Min.


CHOKE INPUT TO FILTER

Heater Voltage	
Heater Current	0.300 Amperes
AC Voltage Per Plate	450 Volts
DC Output Current	70 Ma.
Minimum Value of Input Choke	
§When filter condensers larger than 40 μ fd are used it may crease the specified plate supply impedance.	be necessary to in-

APPLICATION

Sylvania Type 14Y4 is a full-wave cathode type rectifier of Lock-In construction, giving it desirable mechanical features. This tube is designed for service in aircraft or compact AC receivers. Operating conditions and characteristics are similar to those of Type 7Y4 except for heater rating. Conventional full or half-wave circuits may be used.

Sylvania Type 19C8

TRIPLE DIODE TRIODE

PHYSICAL SPECIFICATIONS

Base		
Bulb		T-6½
Maximum Overall Length	• • • • • •	$\dots 2^{3}_{16}''$ $\dots 1^{15}_{16}''$
Maximum Seated Height Mounting Position	• • • • • •	Any
Mounting rostion		Any

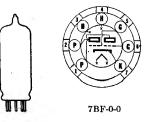
RATINGS

Heater Voltage.	18.9 Volts
Maximum Plate Voltage.	250 Volts
Maximum Plate Dissipation	1.0 Watt
Maximum Diode Current per Plate.	6.0 Ma.
Maximum Peak Heater-Cathode Voltage.	200 Volts
Direct Interelectrode Capacitances: (approx. values	
Plate of Diode #1 or #3 to All Other Elements	5.2 μμf.
Plate of Diode #2 to All Other Elements	4.0 μμf.

rate of Diode #2 to All Other Elements	
Plate of Diode #1 or #3 to Grid (Maximum)	0.0300 µµf.
Trate of Flode #1 of #5 to Grid (Maximum)	0.0000 μμι.
Plate of Diode #2 to Grid (Maximum)	0.006 µµf.
and of Diode #2 to Grid (Maximum)	··· 0.000 µµ1.

TYPICAL OPERATION CLASS A AMPLIFIER—TRIODE UNIT

Heater Voltage. 18.9 Volts Heater Current. 150 Ma. Plate Voltage. -1 Volts Control Grid Voltage. -1 Volt Plate Resistance. 80,000 Ohms Mutual Conductance. 1,250 µmhos 100 100


Amplification Factor. 100 Plate Current 0.5 Ma.

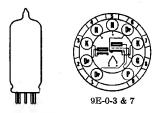
APPLICATION

Sylvania Type 19C8 is a miniature type tube having a highmu triode and three high-perveance diodes in the same envelope. The diode referred to as diode #2 has a separate cathode connection.

19J6 Sylvania Type

MEDIUM MU DUOTRIODE

PHYSICAL SPECIFICATIONS


Base	
Bulb	 T-5½
Maximum Overall Length	 $ 2\frac{1}{8''}$
Maximum Seated Height	
Maximum Overall Length Maximum Seated Height Mounting Position	 Anv
	 •

RATINGS

Heater Voltage AC or DC	18.9 Volts	
Heater Current	150 Ma.	
Maximum Plate Voltage	300 Volts	
Maximum Plate Dissipation	1.5 Watts	
Maximum Peak Heater-Cathode Voltage	90 Volts	
For other data, refer to Type 6J6, which has identical operating conditions.		

19T8 Sylvania Type

TRIPLE DIODE TRIODE

RATINGS AND OPERATION

	18.9 Volts
Heater Current	150 Ma.

For other data refer to corresponding Type 6T8 which is identical except for heater ratings.

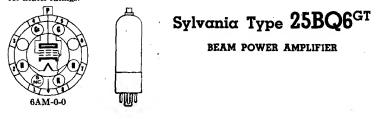
Sylvania Type **25A6**GT

POWER AMPLIFIER PENTODE

PHYSICAL SPECIFICATIONS

Base Bulb	Metal 8-6		25A6GT iate Octal 7 Pin T-9
Maximum Overall Length	814		35/18
Maximum Seated Height	211/16		234
Mounting Position	Any		Any
	RATINGS		
Heater Voltage AC or DC			25.0 Volts
Heater Current			300 Ma.
Maximum Plate Voltage			160 Volts
Maximum Screen Voltage			135 Volts
Maximum Plate Dissipation			5.3 Watts
Maximum Screen Dissipation			1.9 Watts
Maximum Heater-Cathode Voltag	e		90 Volts
TYPICA	L OPERATIC	DN	
Heater Voltage AC or DC		25.0	25.0 Volts
Heater Current.	300	300	300 Ma.
Plate Voltage		135	160 Volts
Screen Voltage		135	120 Volts
Grid Voltage		-20	-18 Volts
Self-Bias Resistor		450	450 Ohms
Peak A-F Signal Voltage		20	18 Volts
Plate Current (Zero Signal)		37	33 Ma.
Plate Current (Maximum Signal).		39	36 Ma.
Screen Current (Zero Signal)		8	6.5 Ma.
Screen Current (Maximum Signal)		14	12 Ma.
Plate Resistance	45000	35000	42000 Ohms
Mutual Conductance		2450	2375 µmhos
Load Resistance		4000	5000 Ohms
Power Output		2	2.2 Watts
Total Harmonic Distortion		9	10 Per Cent

BEAM POWER AMPLIFIER


RATINGS AND OPERATION

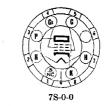
UDUU

 Heater Voltage AC or DC
 25 Volts

 Heater Current
 300 Ma.

 For other data, refer to corresponding Type 6AV5GT which is identical except-for heater ratings.

RATINGS AND OPERATION


 Heater Voltage AC or DC
 25 Volts

 Heater Current
 300 Ma.

 For other data refer to corresponding Type 6BQ6GT which is identical except for heater ratings.

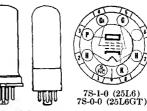
25C6G Sylvania Type

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base	Medium	Octal 7 Pin
Bulb		ST14
Maximum Overall Length		. 4 5/8"
Maximum Seated Height		. 41/16"
Mounting Position		. Any

RATINGS


 Heater Voltage AC or DC.
 25.0 Volts

 Heater Current.
 300 Ma.

For other data on this type refer to type 6Y6 which is identical except for heater ratings.

25L6^{GT} Sylvania Type

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

	25L6	25L6GT
BaseSmall	Wafer Octal 7 Pin	Intermediate Octal 7 Pin
Bulb	Metal 8-6	T-9
Maximum Overall Length	31/1*	35/16 "
Maximum Seated Height	211/16"	2 34 "
Mounting Position	Any	Any
TVDIC		NAT.

CLASS A1 AMPLIFIER

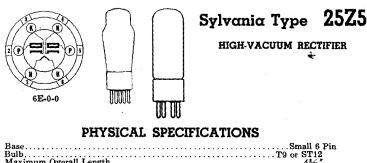
Heater Voltage	25.0	25.0 Volts
ficater voltage	20.0	
Heater Current	300	300 Ma.
Plate Voltage	110	200 Volts
Screen Voltage	110	125 Volts
Grid Voltage*	-7.5	** Volts
Peak AF Signal Voltage	7.5	8.5 Volts
Cathode Bias Resistor	140	180 Ohms
Plate Current, Zero Signal	49	46 Ma.
Plate Current, Maximum Signal	50	47 Ma.
Screen Current, Zero Signal.	4	2.2 Ma.
Screen Current, Maximum Signal	10	8.5 Ma.
Plate Resistance	13,000	28,000 Ohms
Mutual Conductance.	8000	8000 µmhos
Load Resistance	2000	4000 Ohms
Total Harmonic Distortion	10	10 %
Power Output	2.1	3.8 Watts

*For fixed bias circuits the grid circuit resistance should not exceed 0.1 megohm; for self-bias operation 0.5 megohm should be the maximum.

 $\ast\ast Obtained by self-bias resistor. Fixed bias operation at maximum ratings is not recommended.$

APPLICATION

Sylvania 25L6 and 25L6G are power amplifiers intended especially for operation in the output stage of ac-dc and d-c receivers. These tubes provide high power output at the comparatively low plate and screen voltages which are available in such receivers.



Sylvania Type 25W

HALF WAVE HIGH VACUUM RECTIFIER

RATINGS AND OPERATION

8000

Duid,	
Maximum Overall Length	43/18"
Maximum Seated Height	4 % 18 " 3 % 16 "
Mounting Position	Any

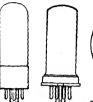
RATINGS

Heater Voltage AC or DC.	25.0 Volts
Heater Current	300 Ma.
Maximum DC Heater-Cathode Voltage	350 Volts
Maximum Peak Inverse Voltage	700 Volts
Tube Voltage Drop (150 Ma. Per Plate)	22 Volts
Maximum Steady State Peak Plate Current Per Plate	450 Ma.

TYPICAL OPERATION VOLTAGE DOUBLER

Heater Voltage	25.0 Volts
AC Plate Voltage Per Plate (RMS)	117 Volts Max.
DC Output Current	75 Ma. Max.
Maximum Steady State Peak Plate Current Per Plate	450 Ma. Max.
Plate Supply Impedance (Minimum).	* Ohms
*Cufficient to limit the maximum stoody state pool plate survey	at to make about

*Sufficient to limit the maximum steady-state peak plate current to value shown. Additional impedance may be required when a filter of more than 40 mfd. is used.


HALF-WAVE RECTIFIER

Heater Voltage	25.0	25.0	25.0 Volts
A-C Plate Voltage per Plate (RMS)	117	150	235¶ Volts
D-C Output Current per Plate	75¶	75¶	75¶ Ma.
Plate Supply Impedance	15	40	100 Ohms
Maximum			

HIGH-VACUUM RECTIFIER

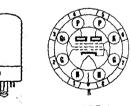
PHYSICAL SPECIFICATIONS

	2526	25Z6GT
BaseSmail	Wafer Octal 7 Pin	Intermediate Octal 7 Pin
Bulb	Metal 8-6	T-9
Maximum Overall Length	314"	35/16"
Maximum Seated Height	211/6*	2 34 "
Mounting Position	Any	Any
-		

RATINGS

Heater Voltage AC or DC	25.0 Volts
Heater Current	300 Ma.
Maximum DC Heater-Cathode Voltage	350 Voits
Maximum Peak Inverse Voltage	700 Volts
Tube Voltage Drop (150 Ma. Per Plate)	22 Volts
Maximum Steady State Peak Current Per Plate	450 Ma.

TYPICAL OPERATION VOLTAGE DOUBLER


Heater Voltage	25.0 Volts
AC Plate Voltage Per Plate (RMS)	117 Volts Max.
DC Output Current	
Peak Plate Current*	
Plate Supply Impedance (Minimum)	* Ohms
*Sufficient to limit the maximum steady-state peak plate curr	
Additional impedance may be required when a filter of more th	an 40 mfd. is used.

HALF-WAVE RECTIFIER

AC Plate Voltage Per Plate (RMS) 117 11 DC Output Current Per Plate 75% 77 Plate Supply Impedance 15 (Maximum.

28D7 Sylvania Type

DOUBLE BEAM POWER AMPLIFIER

8**BS-L-**0

PHYSICAL SPECIFICATIONS

Base	Lock-In 8 Pin
Bulb. Maximum Overall Length.	T-9
Maximum Seated Height	25%
Mounting Position	Any

(Cont'd) 28D7

RATINGS

Heater Voltage	28 Volts
neater Current	0.400 Ampere
Maximum Plate Voltage	100 Volts
Maximum Screen Voltage	67.5 Volts
Maximum Plate Dissipation (Per Section)	3.0 Watts
Maximum Screen Dissipation (Per Section)	0.5 Watts
Maximum Heater-Cathode Voltage	90 Volts

TYPICAL OPERATION

RESISTANCE COUPLED AMPLIFIER CLASS A2

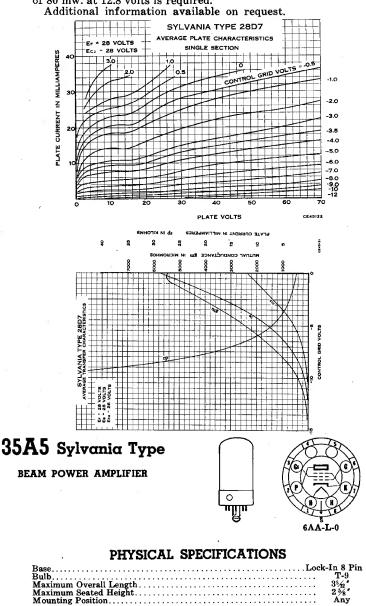
	Self Bias	Fixed Bias
Heater Voltage	. 28.0	28.0. Volts
Heater Current	. 0.400	0.400 Ampere
Plate Voltage§	. 28.0	28.0 Volts
Screen Voltage	. 28.0	28.0 Volts
Grid Voltage		-3.5 Volts
Self-Bias Resistor	. 390	Ohms
Zero Signal Plate Current	. 9.0	12.5 Ma.
Maximum Signal Plate Current	. 6.5	8.1 Ma.
Zero Signal Screen Current	. 0.7	1.0 Ma.
Maximum Signal Screen Current.	. 1.6	1.9 Ma.
Plate Resistance		4200 Ohms
Mutual Conductance		3400 µmhos
Peak AF Signal Voltage	. 4.9	4.9 Volts
Control Grid Resistor Per Section	. 0.5	0.2 Megohm
Load Resistance	. 4000	4000 Ohms
Power Output	. 80	100 Milliwatts
Total Harmonic Distortion	. 10	10 Per Cent

PUSH-PULL RESISTANCE COUPLED CLASS A2

	Self Bias	Fixed Bias
Heater Voltage	. 28.0	28.0 Volts
Plate Voltage§	. 28.0	28.0 Volts
Screen Voltage	. 28.0	28.0 Volts
Grid Voltage		-3.5 Volts
Self-Bias Resistor	. 180	Ohms
Zero Signal Plate Current	, 18.5	25.0 Ma.
Maximum Signal Plate Current.	. 14.5	19.0 Ma.
Zero Signal Screen Current	. 1.2	2.0 Ma.
Maximum Signal Screen Current	. 2.5	3.0 Ma.
Peak AF Signal Voltage (G to G)	, 9.8	9.8 Volts
Control Grid Resistor (Per Section)	. 0.5	0.2 Ohms
Load Resistance	. 6000	6000 Ohms
Total Harmonic Distortion	. 2.5	2.0 Per Cent
Power Output	. 175	225 Milliwatts

TRANSFORMER COUPLED CLASS A2

Heater Voltage		 		3.0 Volts
Plate Voltage§		 		3.0 Volts
Screen Voltage	 . .	 		3 0 Volts
Grid Voltage		 		-0 Volt
Self-Bias Resistor				
Zero Signal Plate	Current	 		4.0 Ma.
Maximum Signal				8.0 Ma.
Zero Signal Screen				
Maximum Signal				
Peak AF Signal V	oltage (G to G).	 		7.8 Volts
Load Resistance				
Total Harmonic I				
Power Output	aracteristics may	 	111167	ou milliwatts


§The above characteristics may be realized provided the DC plate circuit resistance does not exceed 50 ohms per section.

APPLICATION

Sylvania Type 28D7 is a double beam power output tube of Lock-In construction designed for low voltage operation. Comparatively large power outputs are obtainable with very low applied plate voltages. Power outputs of 150 milliwatts or more are readily obtainable using this type of tube in a push-pull circuit employing self-bias. However, each section may be used as desired, separately, parallel or push-pull. Whenever a source of separate bias can be provided, the useful plate voltage will be increased by the amount of the bias. In low voltage operation slight increases in plate voltage are important in giving improved performance. In some cases this bias can be obtained from an oscillator, making a separate battery for bias unnecessary.

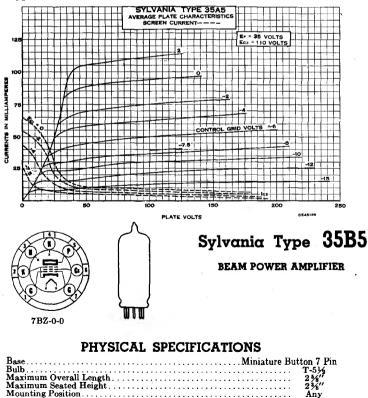
28D7 (Cont'd)

The precautions usually recommended for satisfactory performance of output stages are especially important with Type 28D7. Grid resistors should not exceed values specified so as to minimize the effects of grid currents. A low-mu driver tube (20 or less) is more satisfactory than high-mu tubes for maintaining high output with low distortion. Greatest power output is provided by using another 28D7 with sections paralleled coupled to the output stage by means of a coupling transformer of 5.75:1 impedance ratio (primary to $\frac{1}{2}$ secondary). Power outputs in the order of 600 milliwatts at 11% distortion are obtainable in this manner at plate voltages of 28 volts with Class A2 operating conditions. At 600 mw., driver power output of 80 mw. at 12.8 volts is required.

(Cont'd) 35A5

RATINGS

Heater Voltage AC or DC	35.0 Volts
Heater Current	150 Ma.
Maximum Plate Voltage	200 Volts
Maximum Screen Voltage	125 Volts
Maximum Plate Dissipation	8 5 Watts
Maximum Screen Dissipation	1.0 Watt
Maximum Heater-Cathode Voltage	90 Volts


TYPICAL OPERATION

Heater Voltage AC or DC	35.0	35.0 Volts
Heater Current	150	150 Ma.
Plate Voltage	110	200 Volts
Screen Voltage	110	125 Volts
Grid Voltage*	-7.5	*** Volts
Peak Signal Voltage	7.5	8.0 Volts
Self-Bias Resistor	175	180 Ohms
Zero Signal Plate Current	40	43 Ma.
Maximum Signal Plate Current	41	43 Ma.
Zero Signal Screen Current	3.0	2.0 Ma.
Maximum Signal Screen Current.	7.0	5.5 Ma.
Plate Resistance	14000	34000 Ohms
Mutual Conductance	5800	$6100 \ \mu mhos$
Load Resistance	2500	5000 Ohms
Power Output	1.5	3.0 Watts
Total Harmonic Distortion	10	10 %

*The maximum grid circuit resistance under fixed bias conditions should not exceed 0.1 megohm and for self-bias 0.5 megohm. ***Obtained by self-bias resistor. Fixed bias operation at maximum ratings is not recommended.

APPLICATION

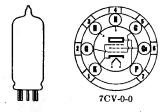
Sylvania Type 35A5 is a beam power amplifier of Lock-In construction and is designed especially for use in the output stage of AC-DC and DC receivers. The heater ratings make this tube suitable for use with 150 Ma. tubes in receivers using series heater circuits. Electrically, this type is equivalent to Type 35L6GT.

35B5 (Cont'd)

RATINGS

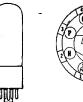
Heater Voltage AC or DC. Heater Current. Maximum Plate Voltage. Maximum Screen Voltage. Maximum Plate Dissipation. Maximum Screen Dissipation. Maximum Peak Heater-Cathode Voltage.	35.0 Volts 150 Ma. 117 Volts 117 Volts 4.5 Watts 1.0 Watts 150 Volts
Direct Interelectrode Capacitances:*	
Control Grid to Plate Input. Output. *With no external shield.	0.4 μμf. 11.0 μμf. 6.5 μμf.

TYPICAL OPERATION


Heater Voltage	35.0 Volts 150 Ma.
Plate VoltageScreen Voltage	110 Volts 110 Volts
Control Grid Voltage	-7.5 Volts
Peak Signal Voltage	7.5 Volts 175 Ohms
Self-Bias Resistor Zero Signal Plate Current	40 Ma.
Maximum Signal Plate Current	41. Ma.
Zero Signal Screen Current Maximum Signal Screen Current	3.0 Ma. 7.0 Ma.
Plate Resistance.	
Mutual Conductance	$5800 \ \mu mhos$
Load Resistance Power Output	2500 Ohms 1 5 Watts
Total Harmonic Distortion.	10 %

APPLICATION

Sylvania Type 35B5 is a miniature output tube having the same characteristics as Sylvania Type 35A5 but for operation under the 110 volt condition only. For curve data reference should be made to Type 35A5.


35C5 Sylvania Type

BEAM POWER AMPLIFIER

NOTE: With the exception of the base diagram given above the characteristics of Type 35C5 are identical with those given for Type 35B5 on this page.

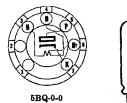
35L6^{GT} Sylvania Type BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base	Intermediate Octal 7 Pin
Bulb	Т-9
Maximum Overall Length	35/6"
Maximum Seated Height	
Mounting Position	Any

(Cont'd) $35L6^{GT}$

RATINGS


Heater Voltage AC or DC. Heater Current. Maximum Plate Voltage. Maximum Screen Voltage Maximum Plate Dissipation Maximum Screen Dissipation. Maximum Heater-Cathode Voltage.	· · · · · · · · · · · · · · · · · · ·	35.0 Volts 150 Ma. 200 Volts 125 Volts 8.5 Watts 1.0 Watt 90 Volts
TYPICAL OPERATION	ON	
Heater Voltage	$35.0 \\ 150$	35.0 Volts 150 Ma.
Plate Voltage	110	200 Volts
Screen Voltage	110	125 Volts
Grid Voltage *	-7.5	** Volts
Cathode Bias Resistor	$175 \\ 7.5$	180 Ohms 8.0 Volts
Peak Signal Voltage Plate Current	40	43 Ma.
Maximum Signal Plate Current	41	43 Ma.
Screen Current (Approx.)	3.0	2.0 Ma.
Maximum Signal Screen Current.	7.0	5.5 Ma.
Plate Resistance (Approx.)	14,000	34,000 Ohms
Mutual Conductance	5800	$6100 \ \mu mhos$
Load Resistance	2500	5000 Ohms
Power Output	1.5	3.0 Watts
Total Harmonic Distortion	10.0	10.0 %
	3.3 4	101

*For fixed bias circuits the grid circuit resistance should not exceed 0.1 megohm; for self-bias operation 0.5 megohm should be the maximum.

**Obtained by self-bias resistor. Fixed bias operation at maximum ratings is not recommended.

APPLICATION

Sylvania Type 35L6GT is a beam power amplifier tube designed for use as an output tube in AC-DC receivers. It is similar to type 25L6GT in application and equivalent to Lock-In types 35A5. Type 35L6GT is capable of delivering large power outputs at reasonable distortion levels with relatively low applied voltages. For curve data, refer to Lock-in Type 35A5.

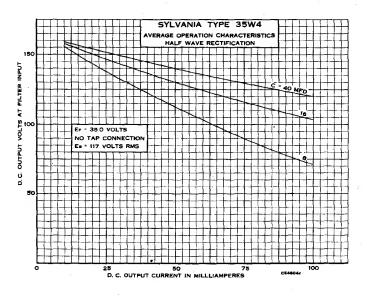
Sylvania Type 35W4

HALF-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

BaseMiniatur Bulb		T-5½
Maximum Overall Length		2 5/8
Maximum Seated Height		2 3/8"
Mounting Position		Any
RATINGS		
Heater Voltage AC or DC	35.0	Volts
Heater Current	150	Ma.
Maximum Peak Inverse Plate Voltage	330	Volts
Maximum Peak Plate Current	600	Ma.
Maximum DC Output Current		
With Panel Lamp (No shunting resistor)	60	Ma.
(With shunting resistor)	90	Ma.
Without Panel Lamp	100	Ma.
Maximum Voltage Panel Lamp Section (Panel Lamp Open)	15	Volts
Maximum Peak Heater-Cathode Voltage	330	Volts
Tube Voltage Drop at 200 Ma. Plate Current	18	Volts
TYPICAL OPERATION		

TYPICAL OPERATION


amps a	nd 40 µf.	Condenser	Input Filter
2.0	32.0	32.0	32.0 Volts
150	150	150	150 Ma.
117	117	117	117 Volts
15	15	15	15 Ohms
	300	150	100 Ohms
60	70	80	90 Ma.
1	2.0 150 117 15	2.0 32.0 150 150 117 117 15 15 300	

35W4 (Cont'd)

With 40 μ f. Input Condenser and No Panel Lamp	
Heater Voltage	35.0 Volts
Heater Current	150 Ma.
RMS Supply Voltage	117 Volts
Minimum Effective Plate Supply Impedance.	15 Ohms
DC Output Current	100 Ma.
Maximum Value of Panel Lamp Shunting Resistor	
70 Ma. Output	800 Ohms
80 Ma. Output	400 Ohms
	250 Ohms
90 Ma. Output	200 Onnis

APPLICATION

Sylvania Type 35W4 is a miniature style half-wave rectifier with tapped heater for panel lamp operation. It is similar in application to Type 35Z5GT and Lock-In Type 35Y4. Care should be taken in designing equipment for use with this tube to assure adequate ventilation as this tube, in common with other rectifiers, runs at quite high temperatures.

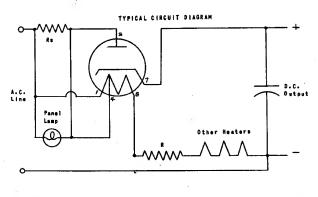
35Y4 Sylvania Type

HALF-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

BaseBulb. Maximum Overall Length. Maximum Seated Height. Mounting Position.	 	-In 8 Pin T-9 3 ⁵ ⁄2″ 2 ⁵ ⁄8″ Any
RATINGS		
Heater Voltage AC or DC	25 A	Volts
Heater Current	150	Ma.
Maximum AC Plate Voltage (RMS)	235	Volts
Maximum Peak Inverse Voltage Maximum Steady State Peak Plate Current		Volts Ma.
Maximum Deak Heater-Cathode Voltage		Volts
Without Panel Lamp With Panel Lamp and Shunting Resistor With Panel Lamp and No Shunting Resistor	90	Ma. Ma. Ma.

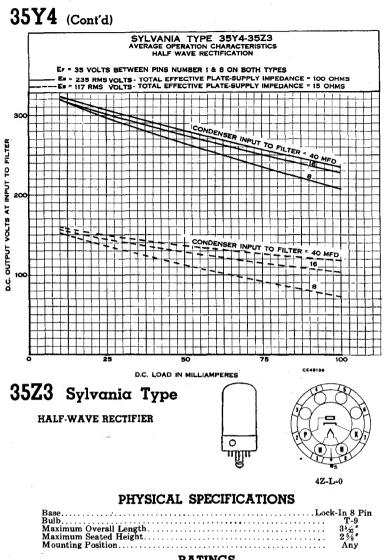
Maximum Value of Panel Lamp Shunting Resistor	
For 70 Ma. DC Output Current.	800 Ohms
For 80 Ma. DC Output Current	400 Onms
For 90 Ma. DC Output Current	250 Ohms
Tapped Section Voltage (Between Pins 1 and 4)	
With 0.150 Ampere flowing between Pins 1 and 8	7.5 Volts
Maximum Voltage Across Tapped Section when	
Panel Lamp Fails (RMS)	15.0 Volts
Tube Voltage Drop at 200 Ma. DC Plate Current	18 Volts


TYPICAL OPERATION

With 40 Mfd. Input Cond	lenser	and No.	40 or	47 Pan	el Lamp
Heater Voltage (Pins 1 and 8	32.0	32.0	32.0	32.0	32.0 Volts
Heater Current (Pins 4 and 8)	150	150	150	150	150 Ma.
Voltage Across Tapped Section of					
Heater (Pins 1 and 4)	5.5	5.5	5.5	5.5	5.5 Volts
AC Plate Voltage	117	117	117	117	235 Volts
DC Output Current	60	70	80	90	60 Ma.
Minimum Effective Plate Supply					
Impedance	15	15	15	15	100 Ohms
Panel Lamp Shunt Resistor		300	150	100	Ohms
With 40 Mfd. Input Condenser and No Panel Lamp					

Heater Voltage (Pins 1 and 8)		35.0	35.0 Volts
Heater Current (Pins 4 and 8)		150	150 Ma.
Voltage Across Tapped Section of Heate	r (Pins 1 and 4)	7.5	7.5 Volts
AC Plate Voltage (RMS)		117	235 Volts
DC Output Current.		100	100 Ma.
Minimum Effective Plate Supply Imped	ance	15	100 Ohms

APPLICATION


Sylvania Type 35Y4 is a high-vacuum type rectifier tube of Lock-In construction designed for use in AC-DC receivers. Its heater ratings enable it to be used in series with other tubes in the 150-Ma. heater group. A heater tap has been brought out to pin No. 4 to provide for panel lamp operation. When so used, the rectifier plate should be connected to this tap so that rectifier plate current will also pass through the lamp. At higher dc load conditions, a shunt resistor on the panel lamp is essential.

Rs

Pilot Lamp Shunt Resistor

R Ballast Resistor

RATINGS

Heater Voltage AC or DC	35.0 Volts
Heater Current	150 Ma.
Maximum AC (RMS) Plate Voltage	235 Volts
Maximum Peak Heater-Cathode Voltage	350 Volts
Maximum Peak Inverse Voltage	700 Volts
Maximum Steady State Peak Plate Current	600 Ma.
Tube Voltage Drop at 200 Ma. DC Plate Current.	18 Volts
Maximum DC Output Current	

TYPICAL OPERATION

HALF-WAVE N	ECTIFIER		
Heater Voltage (AC or DC)	35.0	35.	0 Volts
Heater Current	150	15	60 Ma.
AC Plate Voltage RMS.	117	23	5 Volts
Minimum Total Effective Plate Supply			
Impedance	15		0 Ohms
DC Output Current	100	10	00 Ma.

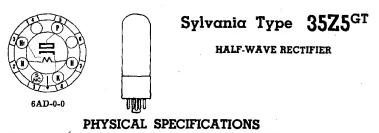
APPLICATION

Sylvania Type 35Z3 is a high-vacuum half-wave rectifier of Lock-In construction, especially designed for use in compact AC-DC receivers. Characteristics are the same as those of 35Z4GT and 35Y4 except that the latter makes provision for the use of a pilot lamp.

Sylvania Type 35Z4

HALF-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS


BaseIntermed	liate	Octal 6 Pin
Bulb.		T-9
Maximum Overall Length		. 3%
Maximum Seated Height		2 3/4 Any
Mounting Position		Anv

TYPICAL OPERATION

Heater Voltage	85.0	35.0 Volts
Heater Current	150	150 Ma.
AC Plate Supply Voltage (RMS)	117	235 Volts
Minimum Plate Supply Impedance	15	100 Ohms
DC Output Current	100	100 Ma.
Tube Voltage Drop at 200 Ma. DC Plate Current		18 Volts

APPLICATION

Sylvania Type 35Z4GT is a half-wave high-vacuum rectifier tube designed for AC-DC receiver service. It is similar to type 35Z5GT and to Lock-In type 35Y4 except that it does not have the heater tap for use with a pilot light.

Base	
Bulb	Т-9
Maximum Overall Length	35/16
Maximum Seated Height	
Mounting Position	Any

TYPICAL OPERATION * * CONDENSER INPUT

Heater Voltage	35.0 Volts
Heater Current	150 Ma.
	125 Volts Max.
DC Output Current*	60 Ma. Max.
DC Output Current**	100 Ma. Max.
Maximum Peak Inverse Voltage	700 Volts
Maximum Peak Plate Current	600 Ma.
Series Plate Resistor	
Tube Voltage Drop at 200 Ma.**	
Maximum Peak Heater-Cathode Voltage	350 Volts
*With rectified plate current through the panel lamp sect	ion of the heater

*With rectined plate current through the panel lamp section of the neater shunted by a 6.3 volt, 0.150 ampere panel lamp, (Sylvania Panel Lamp S40 or S47). **Panel lamp not connected.

APPLICATION

Sylvania Type 35Z5G is a half-wave high-vacuum rectifier designed for use in ac-dc and dc line operated receivers. The 35-volt heater is tapped to permit operation of a Sylvania S40 or S47 panel lamp across Pins 2 and 3. Conventional half-wave rectifier circuits are applicable.

A peak limiting resistor of at least 25 ohms must be used in series with the plate and a surge limiting resistor should be placed in series with the heaters of the other tubes in the heater circuit.

Reference should be made to the Lock-In equivalent Type 35Y4 for further data.

45Z3 Sylvania Type

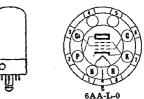
HALF-WAVE HIGH-VACUUM

RECTIFIER

PHYSICAL SPECIFICATIONS

Base	Button 7 Pin
Bulb	T-5½
Maximum Overall Length	21/8"
Maximum Seated Height	178"
Mounting Position	Any
RATINCS	

RATINGS


Heater Voltage AC or DC	45 Volts
Heater Current	75 Ma.
Maximum Peak Inverse Voltage	350 Volts
Maximum Peak Plate Current	390 Ma.
Maximum Peak Heater-Cathode Voltage	330 Volts

TYPICAL OPERATION

Heater Voltage	45 Volts
Heater Current	75 Ma.
RMS Plate Voltage	117 Volts
Minimum Effective Plate Supply Impedance	15 Ohms
Output Current DC*	65 Ma.
*Condenser input filter.	

50A5 Sylvania Type

BEAM POWER AMPLIFIER

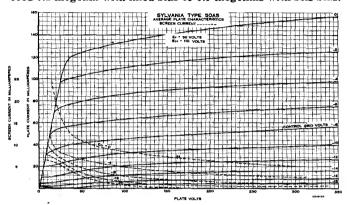
PHYSICAL SPECIFICATIONS

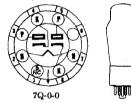
Base	
Bulb	T-9
Maximum Overall Length	35/2"
Maximum Seated Height	2 5%
Mounting Position	Any

RATINGS

Heater Voltage AC or DC	50.0 Volts
Heater Current	0.150 Ampere
Maximum Plate Voltage	200 Volts
Maximum Screen Voltage	117 Volts
Maximum Plate Dissipation	10 Watts
Maximum Screen Dissipation	
Maximum Heater-Cathode Voltage	90 Volts

TYPICAL OPERATION **CLASS A1 AMPLIFIER**

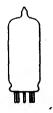

Heater Voltage AC or DC	50.0	50.0 Volts
Heater Current		0.150 Ampere
Plate Voltage	110	200 Volts
Screen Voltage	110	125 Volts
Grid Voltage*	-7.5	** Volts
Peak Signal Voltage	7.5	8.0 Volts
Self-Bias Resistor	175	180 Ohms
Zero Signal Plate Current	49	46 Ma.
Maximum Signal Plate Current	50	47 Ma.
Zero Signal Screen Current	4.0	2.2 Ma.
Maximum Signal Screen Current	10.0	8.5 Ma.
Plate Resistance	13,000	28.000 Ohms
Mutual Conductance	8000	8000 µmhos
Load Resistance	2000	4000 Ohms
Power Output	2.1	3.8 Watts
Total Harmonic Distortion	10	10 Percent


*The maximum grid circuit resistance under fixed bias conditions should not exceed 0.1 megohim and for self-bias 0.5 megohim. **Obtained by self-bias resistor; fixed bias operation not recommended.

(Cont'd) 50A5

APPLICATION

Sylvania Type 50A5 is a beam power amplifier of Lock-In construction designed especially for use as an output tube in AC-DC receivers using other 150 ma. heater tubes operating in series heater circuits. The beam power construction gives high power output and good power sensitivity, at reasonable distortion levels. Transformer or impedance coupling is to be preferred for input circuits but resistance coupling methods are satisfactory provided the grid circuit resistance does not exceed 0.1 megohm with fixed bias or 0.5 megohms with self bias.


Sylvania Type 50AX6G

FULL WAVE RECTIFIER

RATINGS AND OPERATION

50B5 Sylvania Type

BEAM POWER AMPLIFIER

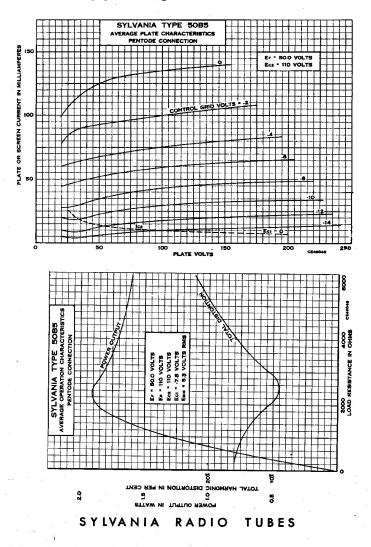
7BZ-0-0

PHYSICAL SPECIFICATIONS

Base Miniature Button 7 Pin Bulb T-5 1/2 Maximum Overall Length 2 5/2 Maximum Seated Height 2 1/2 Mounting Position Any

RATINGS

Heater Voltage AC or DC	50 Volts
Heater Current	150 Ma.
Maximum Plate Voltage	135 Volts
Maximum Screen Voltage	117 Volts
Maximum Plate Dissipation	5.5 Watts
Maximum Screen Dissipation	
Maximum Heater-Cathode Voltage	180 Volts

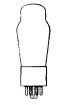

50B5 (Cont'd)

TYPICAL OPERATION

Heater Voltage	50 Volts
Heater Current	150 Ma.
Plate Voltage	110 Volts
Screen Voltage	110 Volts
Control Grid Voltage	-7.5 Volts
Peak Signal Voltage	7.5 Volts
Zero Signzi Plate Current	49 Ma.
Maximum Signal Plate Current	50 Ma.
Zero Signal Screen Current	4.0 Ma.
Maximum Signal Screen Current.	8.5 Ma.
Plate Resistance (Approximate)	10000 Ohms
Mutual Conductance	7500 µmhos
Load Reisstance	2500 Ohms
Total Harmonic Distortion	9.0 Percent
Maximum Signal Power Output.	

APPLICATION

Sylvania Type 50B5 is a beam power output amplifier tube of miniature style of construction. It is similar in application to Type 35L6GT, 50L6GT and Lock-In Types 35A5 and 50A5. Grid circuit resistances should not exceed 0.5 megohm for self bias or 0.1 megohm for fixed bias. Due to the high temperature at which these tubes operate, adequate ventilation should be assured in equipment designed for their use.

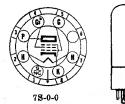

7CV-0-0

Sylvania Type 50C5

BEAM POWER AMPLIFIER

NOTE: With the exception of the base diagram given above the characteristics of Type 50C5 are identical with those given for Type 50B5.

78-0-0


Sylvania Type 50C6G

BEAM POWER AMPLIFIER

RATINGS AND OPERATION

50.0 Volts 150 Ma.

For other data refer to corresponding Type 6Y6G which is identical except for heater ratings.

Sylvania Type 50L6GT

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

Base	diate Octal 7 Pin
Bulb	Т-9
Maximum Overall Length	35/16
Bulb. Maximum Overall Length Maximum Seated Height.	2¾
Mounting Position	Any
RATINGS	
Heater Voltage AC or DC	. 50 Volts
Heater Current	

Maximum Plate Voltage..... Maximum Screen Voltage..... Maximum Plate Dissipation 200 Volts 117 Volts 10 Watts Watts Maximum Screen Dissipation...... Maximum Heater Cathode Voltage... olts

TYPICAL OPERATION CLASS A1 AMPLIFIER

Heater Voltage	50	50 Volts
Heater Current	150	150 Ma.
Plate Voltage	110	200 Volts
Screen Voltage	110	125 Volts
Grid Voltage*	-7.5	** Volts
Self-Bias Resistor	140	180 Ohms
Peak AF Grid Signal	7.5	8.3 Volts
Plate Resistance (Aprox.)	13,000	28,000 Ohms
Mutual Conductance	8000	8000 µmhos
Zero Signal Plate Current	49	46 Ma.
Maximum Signal Plate Current	50	47 Ma.
Zero Signal Screen Current (Appprox.)	4.0	2.2 Ma.
Maximum Signal Screen Current (Approx.)	10.0	8.5 Ma.
Load Resistance	2000	4000 Ohms
Power Output	2.1	3.8 Watts
Total Harmonic Distortion	10	10 Percent
*Tindow rated maximum conditions muid circuit	ropietonoo	should not aveed

*Under rated maximum conditions, grid circuit resistance should not exceed 0.5 megohm for self-bias operation, and 0.1 megohm for fixed bias operation. **Obtained by self-bias resistor. Fixed bias operation not recommended.

APPLICATION

Sylvania Type 50L6GT is a beam power output tube designed for use in series heater circuits with other tubes in the 150 Ma. heater group. It is very similar in characteristics to Sylvania Lock-In Type 50A5 and reference should also be made to that type for further application information,

50X6 Sylvania Type

HIGH-VACUUM RECTIFIER

PHYSICAL SPECIFICATIONS

BaseLock-	In 8 Pin
Bulb	Т-9
Maximum Overall Length	35/2"
Maximum Seated Height	25%"
Mounting Position	

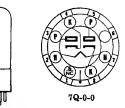
RATINGS

Heater Voltage AC or DC 10%	50.0 Volts
Heater Current	
Maximum Inverse Plate Voltage	700 Volts
Maximum Steady State Peak Current Per Plate	450 Ma.
Maximum DC Output Current Per Plate	75 Ma.
Maximum Heater to Cathode Voltage	350 Volts
Tube Voltage Drop at 150 Ma. Per Plate	22 Volts

TYPICAL OPERATION

VOLTAGE DOUBLER

	Haif Wave	Full Wave
Heater Voltage AC or DC	50	50 Volts
Heater Current	150	150 Ma.
AC Plate Voltage Per Plate RMS		117 Volts
Filter Input Condenser		16 Mfd.
Minimum Total Effective Plate Supply Impedance		15 Ohms
DC Output Current	75	75 Ma.


HALF-WAVE RECTIFIER

Single Section -- Condenser Input Filter

Heater Voltage AC or DC	50	50	50 Volts
Heater Current	150	150	150 Ma.
Plate Supply Voltage AC (RMS)	117	150	235 Volts
Filter Input Condenser.	16	16	16 Mfd.
Minimum Total Effective Plate Supply Impedance	15	40	100 Ohms
DC Output Current	75	75	75 Ma.

50Y6GT Sylvania Type

HIGH-VACUUM RECTIFIER

RATINGS AND OPERATION

Heater Voltage AC or DC..... Heater Current...... 50 Volts 150 Ma.

For other data refer to corresponding Type 25Z6GT which is identical except for heater ratings.

Sylvania Type 50Y7^{GT}

HIGH-VACUUM RECTIFIER DOUBLER

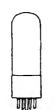
PHYSICAL SPECIFICATIONS

Base	
Bulb	Т-9
Maximum Overall Length	
Maximum Seated Height	
Mounting Position	Any

RATINGS

Heater Voltage AC or DC.	50	Votls
Heater Current		
Maximum Peak Inverse Plate Voltage		
Maximum AC Plate Voltage per Plate (RMS)		
Voltage Doubler Service	117	Volts
Half-Wave Rectifier	235	Volts
Maximum Steady State Peak Current per Plate	450	Ma.
Maximum Peak Heater-Cathode Voltage	350	Volts
Tapped Section Voltage (Pins 6 & 7)		
Tube Voltage Drop at 150 Ma. per Plate	22	Volts
Maximum DC Output Current per Plate	75	Ma.
Maximum DC Output Current per Plate with Panel Lamp	60	Ma.
with Shunt Resistor	65	Ma.

TYPICAL OPERATION


FULL-WAVE VOLTAGE DOUBLER

FULL-WAVE VOLTAGE DO	UBLER		
			With No. 40 or No. 47
N	o Panel L	amp	Panel Lamp
Heater Voltage			46 Volts
Plate Supply Voltage AC (RMS)		117	117 Volts
DC Output Current.		75	65 Ma.
Minimum Total Effective Plate			
Supply Resistance per Plate		15	15 Ohms
Panel Lamp Shunting Resistor			250 Ohms
Panel Lamp Voltage			5.5 Volts
Half-Wave Rectifier per Section-No	Panel L	amp	
Heater Voltage	50	50	50 Volts
Heater Current	150	150	150 Ma.
Plate Supply Voltage AC (RMS)	117	150	235 Volts
Filter Input Canaditanas	16	16	16 µf.
Filter Input Capacitance			
Minimum Total Effective Plate Supply Impedance	15	40	100 Ohms
DC Output Current.	75	75	75 Ma.
Half-Wave Rectifier per Section-W	ith Panel	Lamp	
Heater Voltage	46	46	46 Volts
Heater Current (Pins 2 & 6)	150	150	150 Ma.
Plate Supply Voltage AC (RMS)	117	150	235 Volts
Filter Input Capacitance	16	16	16 µf.
		40	100 µl
Minimum Total Effective Plate Supply Impedance	15		
DC Output Current	_65	65	65 Ma.
Panel Lamp Voltage	5.5	5.5	5.5 Volts
Panel Lamp Shunting Resistor	250	250	250 Ohms

APPLICATION

Sylvania Type 50Y7GT is a high-vacuum rectifier designed for voltage doubler or half-wave service in sets requiring a panel lamp.

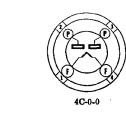
Sylvania Type 70L7GT

RECTIFIER

BEAM POWER AMPLIFIER

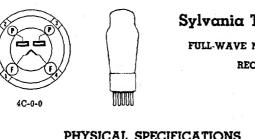
PHYSICAL SPECIFICATIONS

Base	Intermediate Octal 8 Pin
Bulb Maximum Overall Length	T -9
Maximum Overall Length	
Mounting Position	Any


70L7^{GT} (Cont'd)

RATINGS

Heater Voltage AC or DC	70.0 Volts 0.150 Ampere
RECTIFIER UNIT	
Maximum AC Plate Voltage (RMS) Maximum Peak Inverse Voltage. Maximum DC Heater-Cathode Voltage. Maximum Steady State Peak Plate Current. Tube Voltage Drop at 140 Ma. applied DC.	117 Volts 350 Volts 175 Volts 420 Ma. 20 Volts
AMPLIFIER UNIT	,
Maximum Plate Voltage. Maximum Screen Voltage. Maximum Plate Dissipation. Maximum Screen Dissipation. Maximum Heater-Cathode Voltage.	117 Volts 117 Volts 5.0 Watts 1.0 Watt 90 Volts
TYPICAL OPERATION	
Heater Voltage Heater Current	70 Volts 0.150 Ampere
RECTIFIER UNIT	
AC Plate Voltage DC Output Current. Minimum Effective Plate Supply Impedance	117 Volts 70 Ma. 15 Ohms
AMPLIFIER UNIT CLASS A ₁	
Plate Voltage Screen Voltage Grid Voltage Self-Bias Resistor Peak AF Grid Voltage Zero Signal Plate Current Maximum Signal Screen Current (Nominal) Maximum Signal Screen Current (Nominal) Plate Resistance Mutual Conductance Load Resistance Maximum Signal Power Output Total Harmonic Distortion	110 Volts 110 Volts 175 Ohms 75 Volts 40 Ma. 43 Ma. 3.0 Ma. 6.0 Ma. 15000 Ohms 2000 Ohms 1.8 Watts 10 Percent


80 Sylvania Type

FULL-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

Base Bulb Maximum Overall Length Maximum Seated Height Mounting Position †Horizontal operation permitted if pins 1 & 2 are in a vertical	$ ST14 4^{11}_{16}'' 4^{12}_{4'}'' $
RATINGS	
Filament Voltage AC Filament Current. Peak Inverse Voltage. Tube Voltage Drop (125 Ma. per Plate)	5.0 Volts 2.0 Amperes 1400 Volts Max. 60 Volts
TYPICAL OPERATION CONDENSER INPUT TO FILTER	
AC Voltage per Plate (RMS) DC Output Current Plate Supply Impedance per Plate	350 Volts Max. 125 Ma. Max. 50 Ohms Min.
CHOKE INPUT TO FILTER	
AC Voltage per Plate (RMS) DC Output Current Input Choke Value	500 Volts Max. 125 Ma. Max. 10 Henrys

Sylvania Type 82,

FULL-WAVE MERCURY VAPOR

RECTIFIERS

5.0 Volts 3.0 Amperes 1550 Volts 15 Volts

PHYSICAL SPECIFICATIONS

	TYPE 82	TYPE 83
Base	Medium 4 Pin	Medium 4 Pin
Bulb	ST14	ST16
Maximum Overall Length	4 11/16	55 16
Maximum Seated Height	4 ¹ /16	4 34 "
Mounting Position	Vertical-Base	VerticalBase
	Down	Down
D & WILLOC		

RATINGS

Filament Voltage AC.	2.5
Filament Current	3.0
Maximum Peak Inverse Voltage	1550
Tube Voltage Drop (Approximate)	15

	TYPICAL	OPE	RĂ	TION
С	ONDENSER	INPUT	TO	FILTER

AC Voltage per Plate (RMS)	450	450 Volts Max.
DC Output Current	115	225 Ma. Max.
Peak Plate Current	0.5	1.0 Ampere Max.
Plate Supply Impedance per Plate	50	50 Ohms Min.
Condensed Mercury Temperature		
Operating Range	24° to 60°	20° to 60° Centigrade
CHOKE INPUT	TO FILTER	
AC Voltage per Plate (RMS)	550	550 Volts Max.
DC Output Current	115	225 Ma. Max.
Peak Plate Current.	0.5	1.0 Ampere Max.
Input Choke Value (Minimum)	6	3 Henrys

Condensed Mercury Temperature Operating Range.....

4AD-0-0

Sylvania Type 83V

24° to 60° 20° to 60° Centigrade

FULL-WAVE HIGH-VACUUM RECTIFIER

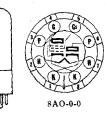
PHYSICAL SPECIFICATIONS

Base	edium 4 Pin
Bulb	. ST14
Maximum Overall Length	. 411/6"
Maximum Seated Height	. 41/16"
Mounting Position	. Any

RATINGS

Heater Voltage AC. Heater Current Maximum Peak Inverse Voltage Tube Voltage Drop (175 Ma. per Plate)	2.0 Amperes 1400 Volts	
TYPICAL OPERATION		

CONDENSER INPUT TO FILTER


AC Voltage per Plate (RMS).	375 Volts Max.
DC Output Current.	175 Ma. Max.
Plate Supply Impedance per Plate	100 Ohms Min.
CHOKE INPUT TO FILTER	

AC Voltage per Plate	500 Volts Max.
DC Output Current	175 Ma. Max.
Input Choke Value (Minimum)	4.0 Henrys

117L7/M7^{GT} Sylvania Type

RECTIFIER

BEAM POWER AMPLIFIER

PHYSICAL SPECIFICATIONS

BaseIntermediat Bulb Maximum Overall Length Maximum Seated Height Mounting Position	T-9 3 ⁷ /6" 2 ⁷ /8"
RATINGS	
Heater Voltage AC or DC Heater Current. Maximum Peak Inverse Voltage Rectifier Section Maximum Peak Plate Current. Maximum Peak Heater-Cathode Voltage	117 Volts 90 Ma. 350 Volts 450 Ma. 330 Volts
AMPLIFIER SECTION	
Maximum Plate Voltage. Maximum Screen Voltage. Maximum Plate Dissipation. Maximum Screen Dissipation.	117 Volts 117 Volts 6.0 Watts 1.0 Watt
TYPICAL OPERATION	
Heater Voltage AC or DC Heater Current	117 Volts 90 Ma.
RECTIFIER SECTION CONDENSER INPUT FILTE	R
RMS Plate Voltage DC Output Current. Effective Plate Supply Impedance	117 Volts 75 Ma. 15 Ohms
AMPLIFIER SECTION	
Self-Bias Resistor Peak Signal Voltage. Zero Signal Plate Current. Maximum Signal Plate Current. Maximum Signal Screen Current. Matual Conductance Load Resistance. Total Harmonic Distortion.	105 Volts 105 Volts -5.2 Volts 110 Ohms 5.2 Volts 43 Ma. 43 Ma. 4.0 Ma. 5.5 Ma. 5300 μmhos 5300 μmhos 5 Percent 0.85 Watt

117N7^{GT} Sylvania Type

RECTIFIER

BEAM POWER AMPLIFIER

8AV-0-0

PHYSICAL SPECIFICATIONS

BaseIntermedi Bulb	T-9		
Maximum Overall Length Maximum Seated Height	··· 37/16*		
Mounting Position	Any		
RATINGS			
Heater Voltage AC or DC Heater Current	117 Volts 90 Ma.		
RECTIFIER SECTION			
Maximum Peak Inverse Voltage Maximum Peak Plate Current Maximum Peak Heater-Cathode Voltage	350 Volts 450 Ma. 330 Volts		

(Cont.) 1171

AMPLIFIER SECTION

supply impedance than the minimum shown may be required. §Grid circuit resistance should not exceed 0.25 megohm with fixed bias or 1.0 megohm with self bias.

Sylvania Type 117Z3

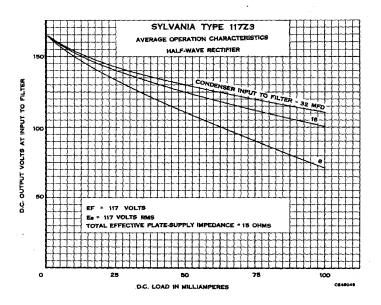
HALF-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

Base	 Miniature Button 7 Pin
Bulb. Maximum Overall Length	
Maximum Seated Height Mounting Position	

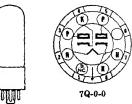
RATINGS

Heater Voltage (AC or DC)	117 Volta
Heater Current	40 Ma.
Maximum AC Plate Voltage (RMS)	117 Volts
Maximum Peak Heater to Cathode Voltage	
Cathode Positive	330 Volta
Cathode Negative	165 Volts
Maximum Peak Inverse Voltage	330 Volts
Maximum Steady State Peak Plate Current	
Tube Voltage Drop at 180 Ma. DC Plate Current.	22.5 Volts
Maximum DC Output Current.	
Maximum Plate Current Surge	


TYPICAL OPERATION

Heater Voltage (AC or DC)	117 Volts
Heater Current	40 Ma.
AC Plate Voltage (RMS)	117 Volta
Output Current	90 Ma.
Minimum Total Effective Plate Supply Impedance	15 Ohms

APPLICATION


Sylvania Type 117Z3 is a miniature half-wave rectifier designed for use in portable and AC-DC receivers. The output is sufficient for operation of combination battery portables with the high efficiency 50 Ma tubes in series.

117Z3 (Cont'd)

117Z6^{GT} Sylvania Type

HIGH-VACUUM RECTIFIER

PHYSICAL SPECIFICATIONS

BaseIntermediate	Octal 7 Pin
Bulb	1-3
Maximum Overall Length	. 35/16" 2 3/1"
Maximum Seated Height	
Mounting Position	. Any

RATINGS

Maximum Peak Inverse Plate Voltage	700 Volts
Maximum Peak Plate Current Per Plate.	360 Ma.
Maximum DC Output Current Per Plate	60 Ma.
Maximum Peak Heater-Cathode Voltage	350 Volts
Maximum Peak Heater-Cathode voltage.	15 Volts
Average Tube Drop at 120 Ma. Output Current	10 10118

TYPICAL OPERATION

HALF-WAVE RECTIFIER WITH CONDER	NSER INPUT	FILTER*
Heater Voltage	117	117 Volts
Heater Current	75	75 Ma.
RMS Plate Supply Voltage 117	150	235 Volts
Input Filter Condenser	40	£1، 40
Minimum Effective Plate Supply Impedance (Per Plate) 15	40	100 Ohms
	60	60 Ma.
DC Output Current (Per Plate)		00 Mza:

VOLTAGE DOUBLER

]	Half-Wave	Full-Wave
RMS Plate Supply Voltage Per Plate	. 117	117 Volts
Input Filter Condenser	40	40 µf.
Minimum Effective Plate Supply Impedance	00	15 Ohms
Per Plate		60 Ma.
DC Output Current	, 00	00 Ma.

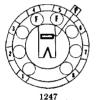
Sylvania Type Sylvania Type

884 885

GAS TRIODES

PHYSICAL SPECIFICATIONS

	884	885
Base	Small Octal 6 Pin	Small 5 Pin
Bulb	ST12	ST12
Maximum Overall Length	41/8"	4 ³ 16
Maximum Seated Height	3%**	3%16"
Mounting Position	Any	Any


TYPICAL OPERATION

	884	885
Heater Voltage	6.3	2.5 Volts
Heater Current		1.5 Ampere
Maximum Plate Voltage	300	300 Volts
Peak Breakdown Voltage	350	350 Volts
Peak Plate Current.	300	300 Ma.
Average Plate Current (0-200 cycles per Sec.)	3.0	3.0 Ma.
(200 + cycles per Sec.)	2.0	2.0 Ma.
G 11 D 114 1000 1		+ FOO 000

Grid Resistor-1000 ohms per peak grid volt, should not exceed 500,000 ohms.

APPLICATION

Sylvania Types 884 and 885 are gas triodes used chiefly as sweep circuit oscillators in oscilloscopes. Both types are identical except for heater ratings and base connections.

Sylvania Type 1247

HIGH FREQUENCY DIODE

PHYSICAL SPECIFICATIONS

Base Bulb	
Top Connection	. Flexible Lead
Maximum Overall Bulb Length. Minimum Lead Length. Mounting Position.	13%"
Minimum Lead Length	1¼″
Mounting Position	Any

RATINGS

Filament Voltage AC or DC ±10%	300 Volts 850 Volts 1.0 Ma. 5.0 Ma.
Direct Interelectrode Capacitances:	
Plate to filament shielded* Plate to filament unshielded	
*With a 0 400" diameter shield connected to filement	· ·

TYPICAL OPERATION

Filament Voltage	0.7 Volts
Filament Current	
DC Plate Current	0.4 Ma.

APPLICATION

Sylvania Type 1247 is a filament type diode designed for use as the probe tube in vacuum tube voltmeters, such as the Sylvania Polymeter, where its small size makes possible a probe which operates satisfactorily up to 300 Mc.

NON-MICROPHONIC PENTODE

PHYSICAL SPECIFICATIONS Identical to Type 7AJ7

RATINGS

Identical to Type 7AJ7

Except Grid to Plate Capacitance, which is $0.004 \mu\mu f$. Maximum.

TYPICAL OPERATION Identical to Type 7AJ7

APPLICATION

Sylvania Type 1273 is a pentode amplifier designed specially for use in the first stages of high gain amplifiers where low microphonism and tube noise are essential. Reference should be made to Type 14C7 for curves, and to Type 7C7 for resistance coupled amplifier data.

1280 Sylvania Type

NON-MICROPHONIC PENTODE

PHYSICAL SPECIFICATIONS Identical to Type 14C7

> RATINGS Identical to Type 14C7

> TYPICAL OPERATION Identical to Type 14C7

APPLICATION

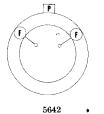
Sylvania Type 1280 is a pentode amplifier designed specially for use in the first stages of high gain amplifiers requiring series operation of tubes and where low microphonism and minimum tube noise are essential. Reference should be made to Type 14C7 for curves, and to Type 7C7 for resistance coupled amplifier data.

Sylvania Type 2050 Sylvania Type 2051

GAS TETRODES

PHYSICAL SPECIFICATIONS

BaseSmal	
Bulb	. ST12
Maximum Overall Length	41/8"
Maximum Seated Height	4 1/8" . 3 ⁹ /16"
Mounting Position	. Any


TYPICAL OPERATION

	2050	2051
Heater Voltage	6.3	6.3 Volts
Heater Current	0.6	0.6 Ampere
RMS Anode Voltage	400	220 Volts
Shield Grid Voltage	0	0 Volt
Peak Cathode Current	1000	375 Ma. Max.
Average Cathode Current	100	75 Ma. Max.
Control Grid Voltage (Approx. 180° out of phase		
with Plate Voltage)	50	4.0 Volts
Peak Signal Voltage	5.0	4.0 Volts
Control Grid Circuit Resistance	1.0	1.0 Megom
Anode Circuit Limiting Resistance*	2000	2000 Ohms

*Must be sufficient to limit anode current to maximum rating. The Above Ratings are absolute Maximums.

APPLICATION

Sylvania Types 2050 and 2051 are gas tetrodes designed for remote circuit control applications. If DC anode supplies are used, provision must be made for interrupting anode supply circuit after each operation to restore grid control action.

Sylvania Type 5642

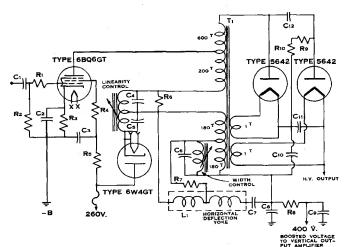
HALF-WAVE RECTIFIER

PHYSICAL SPECIFICATIONS

Base	lexible Leads
Bulb	. T-3
Maximum Bulb Length	2.160"
Minimum Lead Length	. 11/4"
Mounting Position	. Any
RATINGS	
Filament Voltage (AC or DC)	1.25 Volts
Maximum Peak Inverse Voltage	10,000 Volts
Maximum Peak Plate Current #	5 Ma.
Maximum Average Output Current	0.25 Ma.
Minimum Frequency of Supply Voltage	5.0 Kc
Direct Interelectrode Capacitances:*	
Filament to Plate	0.6 µµf.
*With no external shield.	

TYPICAL OPERATION

Filament Voltage	1.25 Volts
Filament Current (per tube)	200 Ma.
Peak Plate Pulse Voltage from Scanning Section	8000 Volts
Output Current	150 μa.
Output Voltage (two tubes in circuit shown)	12.000 Volts


*The duration of the voltage pulse should ont exceed 15% of one horizontal scanning cycle. In a 525 line, interlaced two to one, 30 frame per second television system, 15% of one horizontal scanning cycle is 10 microseconds.

APPLICATION

Sylvania Type 5642 is a subminiature half-wave rectifier designed for use in high voltage power supplies where high efficiency and compactness are required. The use of a wired-in tube assists in avoiding socket insulation and leakage problems.

Leads should not be bent within 1/16" of the glass. Avoid soldering filament leads within 4" of the bulb, and the top (plate) lead should not be soldered within 4" of the glass.

The following circuit shows a typical application in a fly-back rectifier delivering 12,000 volts dc to the picture tube anode.

PARTS LIST

 $\begin{array}{r} \mathbf{0}, 001 \ \mu f, \ 500 \ V, \\ = 2 \ \mu f, \ 50 \ V, \\ = 0.05 \ \mu f, \ 400 \ V, \\ = 0.03 \ \mu f, \ 400 \ V, \\ = 0.1 \ \mu f, \ 600 \ V \\ = 1200 \ \mu \mu f, \ 1000 \ V, \\ = 0.22 \ \mu f, \ 200 \ V, \\ = 10 \ \mu f, \ 450 \ V, \\ = 500 \ \mu \mu f, \ 10 \ Kv, \\ = 500 \ \mu \mu f, \ 10 \ Kv, \end{array}$ = 100 Ohm ½ Watt = 470 K ½ Watt = 150 Ohm 5 Watt = 100 Ohm ½ Watt = 100 Ohm ½ Watt = 1 K 1½ Watt = 1 K ½ Watt = 1 K ½ Watt = 1.5 Meg. 2 Watt = 1.5 Meg. 2 Watt $\frac{R_1}{R_2}$ \mathbf{R}_3 \mathbf{R}_4 R₅ R₆ = 1 K= 1 K R7 Rs Rs \mathbf{R}_{10} = 500 µµf. 10 Kv. T₁ = Horizontal Output & H. V. Transformer = Deflection Yoke 14 mh

DUODIODE

PHYSICAL SPECIFICATIONS Identical to Type 7A6

RATINGS Identical to Type 7A6

TYPICAL OPERATION Identical to Type 7A6

APPLICATION

Sylvania Type 5679 is a cathode type duodiode in which a center tap on the heater has been provided to permit balancing the sections. This adjustment is required in certain types of vacuum tube voltmeters, such as the Sylvania Polymeter. Reference should be made to Type 7A6 for curve data.

Additional series resistance may be required to limit the voltage across either section to the maximum of 3.5 volts under the highest line voltage condition.

Heater Voltage	6.3 Volts
Heater Current	0.6 Ampere
Plate Voltage	250 Volts
Plate Current.	2.3 Ma.
Amplification Factor	70
Plate Resistance	44.000 Ohms
Mutual Conductance.	
	2,000 pillino0

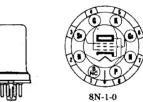
APPLICATION

Sylvania Type 5691 is a high-mu triode intended for industrial applications. It has exceptional uniformity and stability, resists shock and vibration, and is recommended for applications where a life of 10,000 hours is desirable. Within its ratings it is equivalent to Type 6SL7GT.

MEDIUM-MU DUOTRIODE

8BD-0-0

PHYSICAL SPECIFICATIONS


BaseBulb				Т-9
Maximum Overall Length	• • • • • •	· · • · • •	• • • • • •	27/8" 25/16"
Mounting Position	 			Any
RATINGS				
a naturos				
Heater Voltage AC or DC (±5%)				Volts
Heater Current				Ampere
Maximum Plate Supply Voltage DC				Volts
Maximum Plate Voltage DC.			275	Volts
Control Grid Voltage:				
Maximum Negative Bias Value				
Maximum Negative Peak Value			-200	Volts

Maximum Negative Peak Value	-200 Volts
Maximum DC Control Grid Current.	2 Ma.
Maximum DC Cathode Current (per section)	15 Ma.
Maximum Plate Dissipation (per section)	1.75 Watts
Maximum Peak Heater to Cathode Voltage	100 Volts
Maximum Control Grid Circuit Resistance	2 Megohms

APPLICATION

Sylvania Type 5692 is a medium-mu duo triode intended for industrial applications. It has exceptional uniformity and stability, resists shock and vibration, and is recommended for applications where a life of 10,000 hours is desirable. Within its ratings it is equivalent to Type 6SN7GT.

5693 Sylvania Type SHARP CUT-OFF PENTODE

PHYSICAL SPECIFICATIONS

Base		Small Wafer Octal 8 Pin
Bulb	** • • • • • • • • • • • • • • • • • •	Metal 8-1
Maximum Overall Length.		
Maximum Seated Height		21/6"
Mounting Position		Any

RATINGS

Heater Voltage AC or DC ±5% Heater Current	6.3 Volts 300 Ma. 300 Volts
Maximum DC Plate Supply Voltage	330 Volts
Suppressor Grid Voltage 0 to	
Maximum Screen Voltage	125 Volts
Control Grid Voltage	
Negative Bias Range1	to –50 Volts
Negative Peak Value	-50 Volts
Maximum Cathode Current	10 Ma.
Maximum Plate Dissipation	' 2 Watts
Maximum Screen Dissipation	0.3 Watt
Maximum Peak Heater-Cathode Voltage	100 Volts
Maximum Control Grid Circuit Resistance	40 Megohms

APPLICATION

Sylvania Type 5693 is a sharp cut-off pentode intended for industrial applications. It has exceptional uniformity and stability, resists shock and vibration, and is recommended for applications where a life of 10,000 hours is desirable. Within its ratings it is equivalent to Type 6SJ7.

NOISE GENERATING DIODE

PHYSICAL SPECIFICATIONS

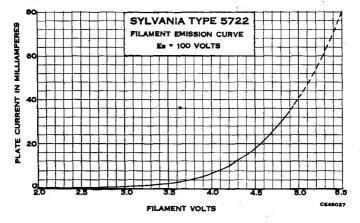
Base		. Miniature Button 7 Pin
Bub. Maximum Overall Length. Maximum Seated Height. Mounting Position.	. .	T-5½
Maximum Overall Length		
Maximum Seated Height		
Mounting Position		····· Vertical*
*Horizontal operation permitte	ed if Pins 1 and 2 are in	a vertical plane.

RATINGS

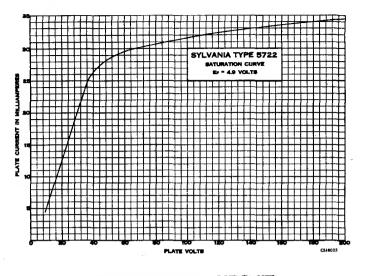
Maximum Filament Voltage Minimum Filament Voltage Filament Current at 4.9 Volts. Maximum DC Plate Voltage. Maximum Plate Current.	2.0 Volts 1.6 Amperes 200 Volts
Maximum Plate Dissipation Continuous Service. Intermittent Service. Maximum On Period in 50% Duty Cycle Direct Interelectrode Capacitances:*	3.5 Watts 5.0 Watts 5 Minutes

..... 1.5 μμf. Plate to Filament..... *With no external shield.

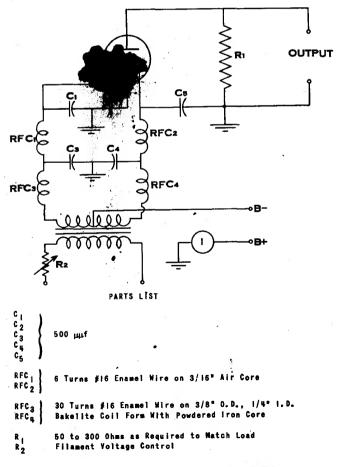
5CB-0-0


TYPICAL OPERATION

Sylvania Type 5722 is a tungsten filament diode designed for use as a noise generator at frequencies up to 400 or 500 mc. The filament center tap allows better RF grounding of the filament when used in the recommended circuit shown on a


following page. Since the tube has a tungsten filament, the "shot effect" may be used as a standard noise sufficient sufficient plate voltage is applied to obtain saturation. If the sufficient plate total generator resistance and I is the finde plate current in approximation of the standard standard plate current in total generator resistance and I is the finde plate current in amperes. To convert to decibels NFdb = $10 \text{ Log}_{10} 20 \text{ IR}$.

In use, the diode is coupled to the input of the amplifier under test and the filament voltage is increased until the noise output power is double that read without the diode. From the plate current reading and the generator resistance the noise factor can be calculated. Additional construction details maybe obtained from the article "How Sensitive is Your Receiver, by Byron Goodman in the September 1947 issue of Q.S.T. and also "Coaxial Noise Diode" by H. Johnson, RCA Review, March 1947, Volume VIII, No. 1. The useful life is dependent on the operating voltages since the usual causes of failure are burnout or vaporization of the


tungsten filament.

5722 (Cont'd)

APPENDIX

FUNDAMENTAL ELECTRICAL LAWS

OHM'S LAW

When a continuous current is flowing thru a given conductor, whose temperature is maintained constant, the ratio of the potential difference or voltage existing between the conductor terminals and the current carried by the conductor is a constant, no matter what the value of the current may be. The mathematical formulae for Ohm's Law may be expressed in the following forms:

$$\mathbf{R} = \frac{\mathbf{E}}{\mathbf{I}} \qquad \mathbf{I} = \frac{\mathbf{E}}{\mathbf{R}} \qquad \mathbf{E} = \mathbf{I}\mathbf{R}$$

Where R = resistance expressed in ohms

I = current expressed in amperes

 $\mathbf{E} =$ potential difference or voltage in volts

A practical example is given to illustrate the use of Ohm's Law:

If the screen current for a certain tube is 2 milliamperes (0.002 ampere) what value of resistance should be used to reduce the screen voltage to 90 volts from a supply voltage of 250 volts?

Solution: The required voltage drop across the resistor would be 250 — 90 or 160 volts.

Therefore
$$R = \frac{E}{I} = \frac{160 \text{ volts}}{0.002 \text{ ampere}} = 80,000 \text{ ohms}$$

POWER

Power is the time rate of doing work. Since energy is the ability to do work, power may also be defined as the time rate of expending energy. From the fundamental definitions of power, electromotive force and current it is easy to show that power may be computed from the following expression:

$$\mathbf{P} = \mathbf{EI}$$

If E is expressed in volts and I in amperes then the power P will be given in watts. Using values for E or for I from Ohm's Law, the above expression becomes either:

$$P = I^2 R$$
 or $P = \frac{E^2}{R}$

If the first equation for power is used, the wattage rating of the resistor used for reducing the screen voltage may be computed.

 $P = EI = 160 \text{ volts} \times 0.002 \text{ ampere} = 0.32 \text{ watt}$

A 0.5 watt resistor should be employed.

RESISTORS CONNECTED IN SERIES AND IN PARALLEL:

When two or more resistors are connected in series, so that the same current flows through each resistor, the total effective resistance (R_t) of the network will be the sum of the separate resistances. Thus:

$$\mathbf{R}_t = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3 + \dots$$

SYLVANIA RADIO TUBES

If a number of resistors are connected in parallel so that the voltage drop is the same across each resistor, then the current in each resistor will be inversely proportional to the resistances. The total effective resistance (R_t) of the network, will be given by:

$$1/R_t = 1/R_1 + 1/R_2 + 1/R_3 + \dots$$

For the case of two resistors in parallel:

$$\mathbf{R}_t = \frac{\mathbf{R}_1 \ \mathbf{R}_2}{\mathbf{R}_1 + \mathbf{R}_2}$$

CALCULATION OF CONDENSERS IN SERIES AND IN PARALLEL:

When a number of condensers are connected in series, the total effective capacity (C_t) is computed from the relation:

$$1/C_{t} = 1/C_{1} + 1/C_{2} + 1/C_{3} + \dots$$

For the case of two condensers connected in series this expression reduces to the form:

$$C_{t} = \frac{C_{1} C_{2}}{C_{1} + C_{2}}$$

The total capacity (\dot{C}_t) of any number of condensers connected in parallel is the sum of the separate capacities:

$$\mathbf{C}_t = \mathbf{C}_1 + \mathbf{C}_2 + \mathbf{C}_3 + \dots$$

CALCULATION OF PROPER RESISTOR FOR SELF-BIASING:

From Ohm's Law

Grid Bias in Volts \times 1000

 $\mathbf{R} = \frac{1}{\text{Total Cathode Current in Ma.} \times \text{Number of Tubes Involved}}$

For triodes the total cathode current is equal to the plate current.

For tetrodes and pentodes the total cathode current is the sum of the plate and screen currents.

For pentagrid converters the plate, screen and oscillator anode currents must be added to obtain the total cathode current.

Example: What biasing resistor is required for two Type 6L6G tubes operated in push-pull Class A with 250 volts applied to the plates?

The following data are taken from the characteristics shown for Type 6L6G:

Grid Bias = -16 Volts Zero Signal Plate Current = 60.0 Ma. per tube Zero Signal Screen Current = 5.0 Ma. per tube Total Cathode Current = 65.0 Ma.

Hence: $R = \frac{16 \times 1000}{65 \times 2} = \frac{16000}{130} = 125 \text{ ohms}$

When over-biased operation is employed the recommended bias resistor values will be specified under Ratings or Circuit Application notes for the tube type involved.

SYLVANIA RADIO TUBES

FUNDAMENTAL PROPERTIES OF VACUUM TUBES

The major operating characteristics of a vacuum tube can be expressed in terms of the amplification factor (μ), the dynamic plate resistance (R_P) and the mutual conductance (G_M). When these are known one can make quantitative calculations of the tube performance under many conditions.

The Amplification Factor is defined as the ratio of a small increment in plate voltage to the corresponding change in grid voltage necessary to maintain constant plate current. In other words, it is the ratio of the effectiveness of the grid and plate voltages in producing electrostatic forces at the surface of the cathode. The amplification factor depends upon the configuration of the electrode system, especially the grid structure, and the electrode voltages. Changes which cause the grid to more completely shield the plate from the cathode will increase the value of μ .

The dynamic Plate Resistance may be defined as the ratio of a small change in plate voltage to the corresponding change in plate current produced. The value will depend upon the grid and plate voltages at the operating point under consideration. It will not be equal to the ratio of total plate voltage to total plate current. The dimensions and relative positions of the tube electrodes will largely determine the value of plate resistance.

The Mutual Conductance (G_M) , sometimes called control grid-plate transconductance (S_M) , is the ratio of the amplification factor to the plate resistance and represents the rate of change in plate current with respect to the change in grid voltage when the other voltages remain constant.

Interelectrode Capacities: The electrodes of a vacuum tube form a complicated electrostatic system, and each element may be considered as forming one plate of a small condenser. In a three-element tube the capacitance between the cathode and grid, between the grid and plate, and between the plate and cathode, are known as the interelectrode capacitances of the tube. Of these, the grid-plate capacity is generally the most important. The effect of these capacitances depends upon the relationship between their reactances and the associated external circuit impedances. Their effect is, therefore, a function of frequency and external load.

In multi-electrode tubes the number of separate interelectrode capacitances is larger than for a triode. Fortunately, only three of these direct interelectrode capacitances are of great importance in most applications. These are:

- 1. Grid-plate capacity (CGP).
- 2. Direct input capacity from control grid to cathode plus all other electrodes except output plate.
- 3. Direct output capacity from plate to cathode plus all other electrodes except the input grid.

AMPLIFIER CLASSIFICATION

All radio receiving tubes except the rectifiers may be conveniently considered as amplifiers. Oscillators and detectors or frequency converters may be thought of as special cases of amplifiers in which use is made of the non-linear relations between the input voltages and output currents of the tube under consideration.

There are three major classes of amplifier service. Definitions describing these have been standardized by the Institute of Radio Engineers.

SYLVANIA RADIO TUBES

Class A Amplifier

A Class A, or Class A1, amplifier is one in which the grid bias and signal voltages are such that plate current in the tube, or in each tube of a push-pull stage flows at all times.

This is accomplished by operating at the center point of the plate current vs. grid voltage curve and using signal voltages which do not drive the grid into either the positive region or into the sharp bend near cut-off voltage.

Class A2 Amplifier

A Class A2 amplifier is the same as a Class A1 amplifier except that the signal may drive the grid into the positive region. This is accomplished by operating at a lower bias than the center point which would have been selected for class A operation.

Class B Amplifier

A Class B amplifier is an amplifier in which the grid bias is approximately equal to the cut-off value, so that the plate current is approximately zero when no signal voltage is applied and so that plate current in the tube or in each tube of a push-pull stage, flows for approximately one-half of each cycle when an alternating grid voltage is applied.

An important characteristic is that the grid circuit draws appreciable power which prevents it from being used with ordinary resistance coupled driver tubes.

Class AB1 Amplifier

A Class AB1 amplifier permits greater output to be obtained from small tubes, but requires push-pull operation to reduce distortion. It is characterized by operation at a higher bias than for Class A and uses a signal large enough to drive the grid into the cut-off region but not into the positive region.

Class AB2 Amplifier

A Class AB2 amplifier is the same as a Class AB1 above except that additional bias may be used, and the signal drives the grid into both the cut-off and grid current regions.

Class C Amplifier

A Class C amplifier is one in which the tubes operate at a bias much greater than cut-off voltage so that plate power is drawn only on the peaks of the signal voltage. It is not used in audio amplifiers because the distortion is too high but is the most efficient circuit for R. F. power amplifiers where the harmonics can be reduced by use of resonant circuits.

SYLVANIA RADIO TUBES

DEFINITIONS OF COMMON RADIO TERMS

- Anode Current: The total current passing to or from an anode. In vacuum tube terminology this is called plate current. Symbol Ib.
- Cathode Current: The total space current passing to or from the emitter. This should not be confused with filament current in filament type tubes. Symbol Is.
- Conversion Transconductance: (Formerly called Conversion Conductance). The ratio of the desired beat frequency component of the plate current to the signal voltage applied to the grid. It is expressed in micromhos. Symbol Gc.
- Coupling: The mutual relationship between circuits permitting a transfer of energy between them.
- **Degeneration:** The result of a portion of the output signal appearing in the input circuit of a vacuum tube so as to reduce gain. It is sometimes introduced to stabilize the circuit and to improve the response. It may be called **negative or inverse feedback**.
- **Demodulation:** The process of separating the modulation component from the carrier. It is commonly called detection.
- Diode: A vacuum tube having two elements. It is usually used as a rectifier or detector. A duo diode is two diodes in one envelope; one element may or may not be common to both diodes.
- Distortion: The change in wave form produced by the transmission device or amplifier.
- Discriminator: A circuit which produces a DC voltage proportional in value and polarity to the variations in the applied frequency about the mean frequency, or which converts frequency modulated signals directly into audio frequency signals.
- Electron Emission: The liberation of electrons from a surface into the surrounding space. If accomplished under the influence of heat it is called Thermionic Emission. If due to the impact of other electrons, it is called Secondary Emission. When emission occurs from a grid from any cause, it is called Grid Emission.
- Fidelity: The degree of accuracy of reproduction of the original signal.
- Filter: A selective network or circuit designed to pass a certain frequency or band of frequencies and reject all others.
- Frequency Deviation: The amount of instantaneous carrier frequency shift from the mean frequency due to modulation in frequency modulated transmitters.
- Frequency Modulation: A method of transmitting intelligence by means of varying the frequency of a transmitter about the mean frequency in accordance with the signal it is desired to transmit.
- Gain: The ratio of output to input signal. It may be expressed in terms of power or voltage. Conversion gain is the ratio of intermediate frequency output to signal frequency input.

SYLVANIA RADIO TUBES

- **Heptode:** A seven element vacuum tube containing an anode, cathode and five other electrodes, usually grids. It is chiefly used as a converter or mixer.
- **Hexode:** A six element vacuum tube containing an anode, cathode and four other electrodes, usually grids. It is chiefly used as a converter or mixer.
- Limiter: A circuit designed to prevent a signal from exceeding a pre-determined amplitude. The stage in a FM receiver used to remove any amplitude changes in the received signal.
- Load Resistance: The total effective resistance in the plate circuit external to the tube.
- **Modulation:** The process of varying the amplitude, phase, or frequency of a carrier in accordance with a signal. Cross modulation is an undesired process whereby the carrier of a desired signal combines with the modulation from an undesired signal. It usually occurs within the receiving device.
- Modulation Factor: The ratio of half the difference between the maximum and minimum amplitudes of a modulated carrier to the average value. It is usually expressed in percent and called modulation percentage.
- Octode: An eight element vacuum tube containing an anode, cathode and six other elements usually grids. It is usually used as a converter or mixer.
- Oscillator: A vacuum tube device for generating alternating current. In superhetrodyne receivers it is the portion of the circuit generating the local signal required to beat with the incoming signal to produce the intermediate frequency.
- **Peak Inverse Voltage:** The maximum instantaneous recurring voltage developed in the opposite direction to that in which an electron tube is designed to pass current. In half-wave rectifiers the value may be 2.8 times the rms value of AC plate voltage.
- Peak Plate Current: The instantaneous maximum recurring current flowing in an anode or plate circuit.
- **Pentagrid Converter:** A vacuum tube having five grids. It is usually used as an oscillator-mixer in a superhetrodyne receiver.
- Pentode: A five element vacuum tube having an anode, a cathode and three grids.
- Perveance: This is a figure of merit often used for diodes to express the ability to rectify high frequency current with low voltage drop. It corresponds roughly to 1/R in a linear conductor, but in a non-linear conductor such as a vacuum tube which does not follow Ohm's Law the corresponding characteristic is called Perveance. High Perveance: means optimum design for both low capacitance and low diode voltage drop for currents within the tube rating.
- Phase Modulation: A method of modulating a carrier by shifting the phase of the carrier with respect to the non-modulated carrier.
- Pip: A strong short pulse appearing on the screen of a cathode ray tube. It is often used as a marker.
- Plate: The common name of the principal anode element in a vacuum tube.

Power Amplifier: An amplifier designed to deliver power as distinguished from a voltage amplifier.

Power Output: The useful power developed in the output device or circuit. It is usually limited by permissible distortion.

- Pulse: A single disturbance, such as half a square wave. Grid pulsing is a method of controlling a circuit by introducing a pulse into the grid circuit. Plate Pulsing is the same as grid pulsing except the pulse is introduced into the plate circuit.
- **Reactance Tube:** A vacuum tube with operating conditions so chosen that the tube appears as an inductance or capacitance which can be varied by means of changes in the control voltage.
- **Rectifier:** A device for converting alternating current into direct current by permitting much more current to flow in one direction than the other. A half-wave rectifier permits current flow only during one half of the cycle. A full-wave rectifier permits current flow from both halves of the cycle.
- **Regulation:** The ratio between a reference voltage and change of voltage caused by the load. It is usually expressed in percent.
- **Ripple Voltage:** The alternating component of the DC voltage after rectification or from a generator.
- Selectivity: The ability of a circuit to choose between desired and undesired signals on adjacent frequencies.
- Sensitivity: Is the term used to denote the ratio between input signal and output power. Generally expressed as microvolts per watt.
- Side Bands: Those frequencies adjacent to, and associated with a carrier.
- Space Charge: A cloud of electrons between elements of a vacuum tube.
- **Space Current:** The current consisting entirely of the electron flow from the cathode to the anode and other positive elements in a vacuum tube.
- **Trigger Circuit:** A circuit having two stable operating conditions readily changed from one to the other by a small change in operating conditions.
- Triode: A three element vacuum tube having an anode, cathode and a control electrode.
- Voltage Gain: The ratio of the voltage developed in the plate circuit to the grid voltage necessary to produce it. Voltage Gain per stage may be obtained from the formula:

$$\frac{\text{Gain} = \mu \times \mathbf{Z}_{\mathbf{P}}}{\mathbf{Z}_{\mathbf{P}} + \mathbf{R}_{\mathbf{P}}} = \frac{\mathbf{G}_{\mathbf{M}} \times \mathbf{R}_{\mathbf{P}} \times \mathbf{Z}_{\mathbf{P}}}{(\mathbf{Z}_{\mathbf{P}} + \mathbf{R}_{\mathbf{P}}) \times 10^{6}}$$

Where G_m is in micromhos; R_p and Z_p in ohms

SYLVANIA RADIO TUBES

GENERAL TUBE AND CIRCUIT INFORMATION

Efficient tube performance requires that careful attention be given to proper installation and to circuit considerations. Numerous suggestions regarding tube ratings, voltage supplies for the various tube elements, volume controlling, shielding and filtering are discussed below. This information applies in a general way to all tube types and represents practical and approved methods employed in modern radio receivers. Additional instructions and precautions pertaining to a particular tube may be found under the Circuit Application for that type. Minor deviations from the information given may sometimes be desirable in special circuit designs, although in general it will be advisable to follow the recommendations.

INTERPRETATION OF RECEIVING TUBE RATINGS

Interpretation of tube ratings published in this manual are in accordance with RMA standards. The ratings shall be interpreted according to the conditions outlined in the following paragraphs.

Cathode

The heater or filament voltage is given as a normal value unless otherwise stated. This means that transformers or resistances in the heater or filament circuit should be designed to operate the heater or filament at rated value for full-load operating conditions under average supply-voltage conditions. A reasonable amount of leeway is incorporated in the cathode design so that moderate fluctuations of heater or filament voltage downward will not cause marked falling off in response; also, moderate voltage fluctuations upward will not reduce the life of the cathode to an unsatisfactory degree.

1.4 Volt Battery Tube Types

Dry Battery Operation: The 1.4 volt line of battery tubes is designed to be operated from a dry cell battery rated at a terminal potential of 1.5 volts. In no case should the voltage across any 1.4 volt section of filament exceed 1.6 volts. In the case of series operation, shunting resistors may be required to obtain this condition.

Operation from other Power Sources: When other power supply sources are used the voltage drop across each 1.4 volt section should have a nominal value of 1.3 volts and should be maintained within a range of 1.25 and 1.4 volts at normal line voltage and for tubes of rated filament current. In the case of series operation shunting resistors may be required to obtain this condition. This assumes a normal line voltage of 117 volts, and a normal storage battery terminal voltage of 2.0 volts per cell.

2.0 Volt Battery Tube Types

The 2.0 volt line of tubes is designed to be operated with 2.0 volts across the filament. In all cases the operating voltage range should be maintained within the limits of 1.8 volts to 2.2 volts.

Plate and Screen

In the case of plate voltage and screen voltage, however, recommended maximum values are given. The interpretation of this maximum value depends on the power source, as follows:

this maximum value depends on the power source, as follows: A-C or D-C Power Line: The maximum ratings of plate and screen voltages and dissipations given on the tube type data sheets are Design Maximums. For equipment designed for

use in the United States on nominal power-line services of 105 to 125 volts, satisfactory performance and serviceability may be anticipated, provided the equipment is designed so as not to exceed these **Design Maximums** at a line voltage of 117 volts.

Automobile Storage Batteries: When a tube is used in automobile receivers and other equipment operated from automobile storage batteries, consideration should be given to the larger percentage range over which the battery voltage varies as compared with the power-line voltage. The average voltage value of automobile batteries has been established as 6.6 volts. Automobile battery operated equipment should be designed so that when the battery voltage is 6.6 volts, the plate voltage, the plate dissipation, the screen voltage, the screen dissipation, and the rectifier load current will not exceed 90% of the respective recommended Design Maximum values given in the data for each tube type.

"B" Batteries: Equipment operated from "B" batteries should be designed so that under no condition of battery voltage will the plate voltage, the plate dissipation, the screen voltage, and the screen dissipation ever exceed the recommended respective maximum values shown in the data for each type by more than 10%.

Other Electrodes

When a tube is of the multigrid type, the voltages applied to the additional positive electrodes will be governed by the considerations stated under Plate and Screen.

Typical Operation

For many receiving tubes, the data show typical operating conditions in particular services. These typical operating values are given to show concisely some guiding information for the use of each type. They are not to be considered as ratings, because the tube can be used under any suitable conditions within its rating limitations.

VOLTAGE SUPPLIES

The B-voltage supply includes voltage for the operation of plate circuits, screen circuits, and sometimes for bias circuits. The principal methods for obtaining each in various kinds of receivers will be described.

In battery receivers used in locations remote from power supply lines, B batteries are usually employed for the plate voltage. The screen voltage may be tapped off at the appropriate voltage; or for some cases a series dropping resistor and shunt filter condenser is applicable. Bias voltage was formerly obtained from separate batteries. However, with certain 1.4 volt battery types, such batteries are unnecessary since the tubes may be operated with no initial bias other than that developed across the a-v-c diode resistor.

For all other receivers screen voltages are obtained either by using a voltage divider or a series dropping resistor from the positive supply lead.

Grid bias is usually then supplied by means of an adequately by-passed resistor placed in the cathode circuit, or if a more stable bias is required, by means of a resistor in the negative lead of the plate supply and also adequately by-passed. Since this resistor carries the total plate supply load current, bias developed in this manner is much less affected by individual tube and circuit variations. As an economy measure a speaker field or filter choke having the proper resistance can be substituted for this resistor. In this case, resistance capacity filter circuits will be necessary to prevent hum voltage from appearing in the bias circuits, since the choke or speaker field will then often become part of the filter circuit.

SYLVANIA RADIO TUBES

In the cathode or "self-biased" circuit it is essential, except in push-pull circuits or where degeneration is desired, that the cathode resistor be by-passed with sufficient capacity so that no appreciable a-c impedance exists between cathode and grid return. With the other method of C-bias mentioned, adequate filtering must be used in order to keep at a minimum any power supply hum which might be applied to the tube grids.

For a-c operated receivers a step-up power transformer and rectifier tube are used to supply pulsating d.c. to an appropriate filter system, the output of which is essentially pure d.c. This supply can then be utilized for the recommended plate, screen and bias voltages.

In ac-dc radio sets the line voltage is applied directly across a rectifier tube and the associated filter system without using a power transformer. Whenever operation above 117 volts is required, a resistor of 50 to 100 ohms should be inserted in series with the rectifier plates to prevent damage to the tube or filter condenser. In many modern sets a filter capacity of 30 mf or more has been used which requires the addition of a peak current limiting resistor to prevent damage to the rectifier tube. The proper value will be found specified for each type under the various conditions of load. Except in circuits designed for voltage doubling, the rectified voltage will be relatively low and somewhat below the peak value of the impressed line voltage supply.

The r.f., converter and power output tubes suitable for use in this type of receiver are indicated by the inclusion of a rating of 100 volts for both plate and screen. The characteristics under these conditions show very little reduction in the mutual conductance but a great decrease in the plate resistance due to the plate and screen being at the same potential. The effect of this on performance can be estimated from the gain formula on page 14. The reasons for it can be seen from any of the plate characteristic curves and is discussed in the section on the Use of Curve Data.

Receivers operated directly on d.c. employ a hum or commutator-ripple filter that is connected across the line, the positive side being used for the plate supply voltage.

Automobile receivers utilize either a motor generator designed to deliver high d-c voltage, or a vibrator-transformer with a suitable rectifier and filter system to supply the set with B voltages. Either method depends upon the car storage battery as the primary source.

HEATER VOLTAGE SUPPLIES

To obtain satisfactory performance it is important that proper voltages be supplied to the heaters or filaments at all times. The life of the tubes will be greatly shortened if excessive voltages are applied because the active or electron emitting material will be evaporated at a faster rate than required. If, on the other hand, the voltages are too low, the operating temperature of the cathode or filament will be inadequate to supply sufficient emission for proper operation.

The following sources of filament power supply are generally used:

Dry batteries "Air Cell" batteries Storage batteries Direct Current 32 volt farm lighting power Alternating Current power line

The voltage delivered by dry batteries falls off during life so that it is necessary to provide a rheostat or ballast tube in order that constant voltage may be supplied to the tubes during the life of the batteries.

SYLVANIA RADIO TUBES

The voltage delivered by an "air cell" battery remains quite constant until final exhaustion, when it drops very rapidly. A fixed series resistor used in connection with this battery supply device will usually prove entirely satisfactory.

Exceptions to the two preceding paragraphs exist when 1.4 volt battery tubes are employed. These types will operate directly from a suitable 1.5 volt dry battery without the use of a series dropping resistor or ballast tube since the filament design provides satisfactory performance over the useful range normally encountered during the life of the battery. Single cell "air cells" also provide satisfactory operation without the use of a fixed series resistor since the constant terminal battery voltage is within the normal operating range for these tubes.

The voltage delivered by a storage battery varies widely, depending upon the condition of charge. If 5 volt tubes are employed, it will be necessary to employ a rheostat to reduce the voltage at the socket terminals to 5 volts. If 6.3 volt heater type tubes are employed, it will be unnecessary to use a series resistor unless the voltage range exceeds the normal value by more than 10%.

Receivers designed to operate on 115 volt d-c lines usually employ tubes connected in series, and with sufficient fixed resistance introduced the heater current is kept normal with 117 volts applied. Under normal line voltage variations from 105 volts to 130 volts no additional adjustable resistors will be necessary.

The universal type of receiver so common at the present time employs the series filament method of connection described in the previous paragraph. In general, no special precautions are necessary to take care of line voltage fluctuations.

Receivers designed for use on a-c power lines of a specified frequency employ step-down transformers to supply the proper filament voltages. If extremely high line voltages are encountered it may be desirable to incorporate an added resistor to reduce the voltage applied to the primary to a nominal value.

VOLUME CONTROL CONSIDERATIONS

The method employed in older type receivers to control the volume was that of varying the screen voltage applied to the tubes. Later, with the advent of remote cut-off tubes, the system of C-bias variation was universally adopted. The bias voltage was obtained either from a potentiometer across the negative portion of the bleeder, or by inserting a variable resistance in the common cathode lead of several tubes when manual control of sensitivity was desired.

Most modern receivers employ automatic volume control. The function of the a-v-c circuit is to properly regulate the bias applied to the control grids of the r-f, converter and i-f tubes so that, in-so-far as the inherent limitations of the receiver permit, a nearly constant signal will be delivered to the input of the second detector. This is accomplished by utilizing the rectified voltage developed across the load resistor in the diode circuit for the control voltage impressed on the grids of the amplifier tubes. The diode current flowing through the resistor will place the cathode end at positive potential and the opposite end at negative potential. The negative voltage for biasing the grids is obtained from the negative end of this resistor. The value of the resistor should be such that for a given signal the drop in voltage across it will be sufficient to bias the tubes being controlled to a sensitivity consistent with the volume desired. An increase in the r-f signal input will raise the voltage drop, thereby applying more bias to the control tubes. This will decrease the receiver sensitivity and

SYLVANIA RADIO TUBES

maintain the receiver output at normal volume. On the other hand, a decrease in r-f signal input reduces the voltage drop and thus lowers the bias on the control tubes. This increases the receiver sensitivity and automatically maintains the volume constant.

With sharp cut-off tubes the cut-off voltage may be extended by feeding the screen through a series resistor from the full B-voltage source. The tube will then act somewhat similar to a remote cut-off type where the volume is controlled by varying the C-bias. The extended cut-off feature thus obtained is intermediate in magnitude between sharp and remote cut-off tubes. Such service is not recommended where the signal voltage is apt to be large since the sharpness of the knee of the dynamic characteristic is not materially reduced. In no case will the dynamic curve become similar to the characteristic of true remote cut-off tubes.

SHIELDING

In order to obtain stable amplification which will be comparable with the theoretical limit it is essential that ample consideration be given to proper shielding. This is especially necessary in high gain circuits.

Each receiver layout will present different shielding problems. These become more complicated in small compact radios. Much can be done to minimize the necessity for shielding by using a layout scheme such that critical feed-back points are separated as far from each other as is conveniently possible. Over-all feed-back from the output tube to the antenna circuit should always be avoided.

FILTERING

There are two major classes of filters, the high frequency and the low frequency types. In the former, very good condensers having low resistance and inductance components are required. Electrolytic condensers are not generally satisfactory for high frequency work.

At low frequencies it is necessary to consider the peak voltage that may be impressed on the condensers, since this is considerably greater than the d-c voltage measured across them. If considerable power is to be delivered from the filter an inductance-capacity filter should be used. Whenever the load current from the filter is not excessive, a resistance-capacity filter can be used. This type is more economical and requires less space.

AVC filter systems usually employ resistance and capacity networks. Careful consideration must be given to the time constant. If this is made too long, a sudden disturbance such as static may cause the receiver to become inoperative for a noticeable period of time. When the constant is too short, low frequency degeneration and modulation distortion may occur. A suitable value for the time constant is of the order of onetenth second.

Screen circuits usually require more careful filtering than the plate circuits, since the screen grid has a control effect quite similar to any other grid in the tube. Instability and general interaction between circuits often result from inadequately filtered screen grids.

C-bias filtering has been discussed in detail under Voltage Sources. The usual circuit elements involved are series resistors and low-voltage shunt condensers.

SYLVANIA RADIO TUBES

LOCK-IN TYPE TUBES

Sylvania Lock-Ins are small "all-glass" tubes without the familiar bakelite base. The contact pins are sealed into the glass bottom, thus eliminating soldered connections. This type of construction permits single-ended operation, as no top cap connections are present, and provides compactness, suitable shielding, and a special lock-in feature. Numerous types are especially suitable for use in UHF applications because of low lead inductances, low inter-electrode capacitances, and low dielectric losses. The lower portion of the tube is fitted with a metal shell and guide pin. This unit acts as a shield and makes possible the lock-in feature by employing a groove around the bottom of the locating pin which fits into a catch on the socket.

The locking arrangement holds the tubes in the sockets securely, assuring good contact at all times. Removal of these tubes from the sockets may be somewhat difficult when done by a direct upward pull. With a slight off-side pressure, the socket lock is released and the tube is readily removed.

These tubes are not directly interchangeable with other designs of receiving tubes because of the socket requirements. In many instances the electrical characteristics and applications are similar to other well known types. Adequate information is supplied under the various lock-in types shown elsewhere in this Manual.

METAL TUBES

Metal tubes are somewhat smaller than the regular types of glass tubes. The bulb or shell diameter is one inch except at the base where the maximum diameter is one and five-sixteenths inches. The shell is all metal and the lead wires are brought out through the "header", which seals the shell at the bottom. The shell is connected to a base pin and operates at ground potential to eliminate any danger of electric shocks. The over-all length of the tube is reduced and an octal base is provided.

The octal base has provisions for eight pins uniformly spaced. Where fewer than eight pins are required, they are omitted and the spacing of the remaining pins is unchanged. The pin numbering is in accordance with the RMA standard numbering system. In this system, numbers are assigned to each of the eight possible pin positions. Numbering begins at the shell connection, which is always the first pin to the left of the locating lug when the base is viewed from the bottom with the lug toward the observer. The direction of numbering is clockwise on the basis of possible pin position.

G, GT AND GT/G TUBES

Tubes are often classified according to their general design and construction. Lock-In and metal types have been briefly described. The so-called "regular" glass types are characterized by the style of glass envelope and particularly by the standard bakelite base equipped with four, five, six or seven pins as required, and the absence of any locating base lug.

G type tubes are glass tubes which are, in most cases, identical or very similar in operating characteristics to many of the regular types. The bases are of octal design with a bakelite locating lug while the top caps, if required, are of the miniature style. In these respects the G tubes resemble metal tubes.

SYLVANIA RADIO TUBES

A smaller version of the G tube is the GT style designed for use where tubes of this size are desired. For most GT types the characteristics are essentially the same as for the G type equivalent. All GT tubes are equipped with octal bases and a tubular bulb is employed. The suffix GT is derived from the base used on G types and tubular T style bulb. Reduction in physical size is secured through the use of a shorter stem.

Because of the similarity in characteristics between G tubes and the corresponding GT types it is usually possible to interchange GT for G tubes and vice versa if space permits. Consequently, many G types have been discontinued as such, the GT style adopted, and the tubes bulb-etched GT/G.

Two kinds of octal bases are employed on GT and GT/G types. Rectifier and output types are equipped with an all bakelite base as on G tubes. Converters, r-f and i-f types have metal shell bases, that is, a combination of a bakelite wafer to which is fastened a metal shell which is cemented to the glass bulb. The metal shell serves as a part of the shielding and is connected to pin No. 1. This arrangement often permits GT/G or GT tubes to be substituted for equivalent metal types. Slight realignment of tuned circuits may be required to secure correct performance. If additional shielding is necessary on GT/G tubes an external shield can be slipped over the metal shell. Other GT/G types may have one or the other style of base described above, this being optional with the manufacturer.

MINIATURE TUBES

One of the recent trends in radio tube manufacture is the reduction in size of the tube required for given performance. The group of tubes known as miniatures are good examples of the results which may be obtained in a small $T-5\frac{1}{2}$ bulb. Many of these types are particularly useful at high frequencies because of the short leads and the absence of the old style phenolic insulation. Some well-known types of this design are Types 12AU6, 12AT6, 12BA6, 12BE6, 35W4 and 50B5.

BATTERY TUBES

There are two general groups of battery tubes: the group designed for 2-volt operation and the newer group of 1.4 volt types. The former are now employed primarily for replacement purposes and their characteristics are quite well known. The latter both in GT/G and Lock-In construction are widely used in all forms of battery receivers and several special features are outlined below.

The 1.4 volt group of battery tubes is of particular interest because of the economy afforded in power supply requirements and the reduction in space which is possible. These tubes have been designed especially for economical operation, non-microphonic action and long life. With the exception of the output types, the tubes are designed for zero bias operation, thus simplifying circuit applications and reducing couplings to some extent.

Since these tubes are of the directly heated filament type there may be some small variation in contact potential which, in some instances, may result in slight variation in sensitivity between tubes of the same type if the grid return is made directly to minus filament. It is recommended that a resistance of at least 0.5 megohm, suitably by-passed, be connected between the grid return and minus filament. If these tubes are employed so that a-v-c voltage is applied to the grids, the resistors used for isolation and diode load will be sufficient.

SYLVANIA RADIO TUBES

Since the filament wire employed in these tubes is extremely small in diameter, some precautions may be necessary to prevent filament vibrations resulting mainly from acoustic and mechanical feed-back from the speaker to the tubes and chassis. Therefore, it is preferable not to mount the speaker directly on the chassis. A further point to bear in mind is the fact that the permanent magnet of the speaker produces a strong magnetic field which may influence the electron stream in tubes that are in close proximity to the magnet. With moderate care in lay-out this difficulty can be readily avoided.

TUBE AND BASE DIAGRAM SYMBOLS

A —Anode	IS —Internal Shield
Dp —Diode Plate	J —Jumper
F — Filament	K Cathode
Fc —Filament Center Tap	NC-No Connection
GControl Grid	PPlate
Ga — Anode Grid	Rc — Ray Control
Gm-Modulator Grid	S – Metal Shell
Go Oscillator Grid	SA-Starter Anode
Gs —Screen -Grid	Su —Suppressor Grid
H —Heater	T —Target
Hc —Heater Center Tap	XS—External Shield
Ht —Heater Tap	🗆 — Тор Сар
Ic —Internal Connection	\rightarrow —Locating Pin

The symbols listed above are those employed in connection with the tube and base diagrams accompanying the characteristics on individual types of Sylvania tubes shown in the following section of this Technical Manual. All base diagrams are illustrated as viewed from bottom of base and numbers are in accordance with the RMA standard numbering system. Basing diagrams are purely symbolic and are not to be interpreted as exact representations of tube structure.

BASE CONNECTION DIAGRAMS

The Radio and Television Manufacturer's Association have standardized on an improved method of designating the base connections. Formerly every minor change of shielding, really required a new drawing but now the location of the shielding elements is indicated by two following numbers (or letters) according to the following rules:

- (1) The first group of 2 or 3 digits, one figure and one or more letters, indicates the basing arrangements as far as the more important elements are concerned. This is the same group formerly given in the manual.
- (2) Following the dash separating it from the preceding group is a single numeral indicating the base pin to which is connected any external shielding such as base shielding or shell of metal tubes. The letter "L" means locking lug as on lock-in type tubes.

SYLVANIA RADIO TUBES

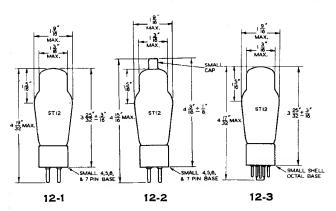
(3) Following the second dash is a figure (or figures) indicating to which pin any internal shielding is connected. In case connection is made to two pins both numbers appear, connected by the symbol &.

Examples are: Type 6SK7GT, basing symbol 8N-1-5 which means base diagram number 8N with base shield connected to Pin No. 1 and internal shield to pin No. 5. Type 7E6 basing symbol 8W-L-7 which means base diagram 8W with base shield connected to locking lug and internal shield connected to pin No. 7.

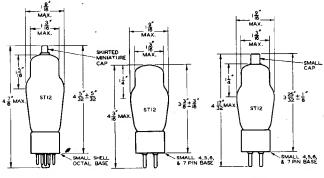
CATHODE RAY TUBES

Sylvania manufactures a line of television picture tubes and general purpose cathode ray tubes for a wide variety of initial equipment and renewal applications. Technical characteristics of the more popular types are provided in this tube manual. If additional data are required, write the Technical Publications Section, Sylvania Electric Products Inc., Emporium, Pennsylvania.

In radio servicing, as in any other work, certain precautions must be observed in order to work safely. With television receiver servicing the major dangers are from possible high voltage shock or injury from flying glass if a tube is carelessly or accidentally broken. To avoid shock we recommend taking no chances or short cuts; turn the power off and discharge the condenser before making changes. Be sure the interlocks and high voltage insulation in the set are in order. Also, use a dry linoleum or rubber mat to stand on and keep one hand in your pocket when making adjustments in a live set.

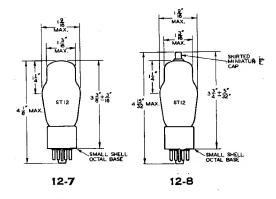

To avoid injury from broken glass it is recommended that gloves and goggles be worn when handling the larger picture tubes (over 5 inches in diameter) and that tubes not in a set be kept in their cartons. Be careful not to scratch the tube with tools or let it roll off the table. Worn out tubes should be disposed of by breaking the tip to let air in, making them safe for handling since only high vacuum makes implosion possible.

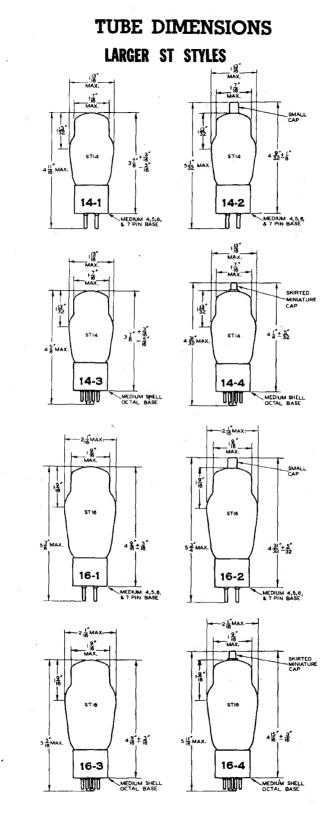
WARNING: X-ray radiation shielding may be necessary to protect against possible danger of personal injury from prolonged exposure at close range if this tube is operated at higher than the manufacturer's Maximum Rated Anode Voltage or 16,000 volts, whichever is less.


Some types have an external conductive coating on the glass shell. This coating should be grounded as a precaution against dangerously high potentials being developed on the coating.

The anode voltage is applied to the shell of the metal cone type tubes, making it necessary for such types to be operated only within an enclosure to prevent accidental contact or grounding.

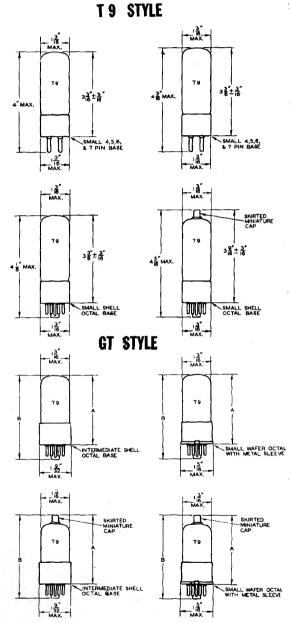
It will be noted that with each tube type there appears a tube outline drawing showing the style of bulb and base employed. In the tabulations of characteristics the type of bulb is specified by a symbol and the style of base is also listed. Whenever it is desired to know the tube dimensions pertaining to any particular tube, reference may be made to the complete group of tube outlines on pages 24 to 28 which show all important dimensions.


ST-12 STYLE

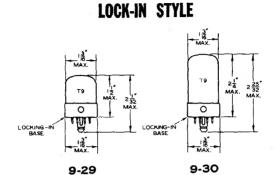


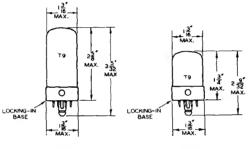
12-5

12-6



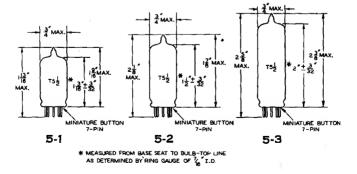
SYLVANIA RADIO TUBES


18

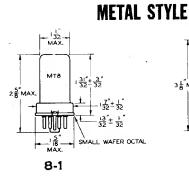

SYLVANIA RADIO TUBES

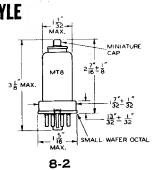
DIMENSIONS "A" AND "B" ARE GIVEN AS SEATED HEIGHT AND OVERALL LENGTH RESPECTIVELY FOR EACH INDIVIDUAL TYPE.

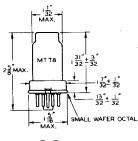
SYLVANIA RADIO TUBES

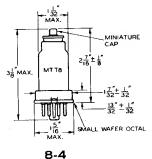


9-31




MINIATURE STYLE



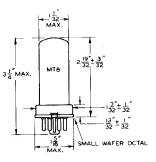

The construction of the T6½ type is comparable to that of the T5½ types 5-2 and 5-3. The major differences are the bulb diameters and bases, the T6½ having a 9 pin base and a $\frac{7}{8}$ " maximum bulb diameter.

SYLVANIA RADIO TUBES

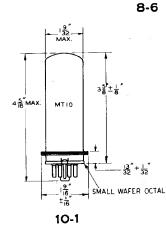
_'<u>32</u>. MAX

мтв

132 ± 32


语=节

¹³/₃₂"± <u>↓</u>"


SMALL WAFER OCTAL

7

13 MAX.

MAX. 8-5

SYLVANIA RADIO TUBES

USE OF CURVES

In general, curves are used to determine the proper operating point which will give a required characteristic. Audio amplifier tubes should be operated on the linear portion of the tube characteristic while detectors on the contrary should be operated on a non-linear portion. There are many curves which may be taken on tubes, but engineers have selected the following ones as being generally useful.

Plate Characteristic—This is the name given to the curve taken with plate current plotted along the vertical axis and plate voltage along the horizontal axis. A number of lines are generally shown, for different grid bias voltages at regular intervals over the range of probable use. In a screen grid tube there may be a number of plate families required, one for each recommended value of screen voltage.

On power tubes the plate characteristic may be used to determine the approximate power output for conditions not listed by the manufacturer. Let us take the type 7A4 as an example. Power output of this tube is not normally required so is not included in the characteristics, but suppose that a small amount of power were required from a triode of this nature, the procedure would be as follows:—Since the tube, when operated at 250 volts on the plate and —8 volts bias, draws 9 ma. this would seem to be a safe operating current. (For other plate voltages the bias voltage is generally taken

as .68 x Eb Make a mark on the -- 8 volt curve above 250

volts on the plate voltage scale. The next step is to get a load line. If the load impedance is known, a line is drawn through the selected operating point such that the ratio of the voltage as read at the point of intersection with the horizontal axis to the current at the point of intersection on the vertical axis gives the desired value of load resistance. This is best done by arbitrarily selecting a value of current, say 20 ma., and if 20,000 ohms load is required the voltage intercept which gives this

will be $E = I \times R = 20 \times 20,000 = 400$

Then join 20 ma. with 400 volts. This does not give the desired load line because it does not pass through the required operating point. All lines parallel to this, however, have the same ratio of intercepts on the axes and so another line is drawn parallel to it but passing through the selected operating point.

From this line we can now read the instantaneous value of current for any instantaneous value of signal applied to the grid. If operation is limited to the negative region the peak signal cannot exceed 8 volts and the tube current will swing from $15\frac{1}{2}$ ma. at 0 grid volts to $3\frac{1}{2}$ ma. at —16 grid volts. The voltages at these points are read if the value of power output is required. These read about 125 and 355 respectively and the power output is:

 $\begin{array}{c} \underline{\text{Change in current x Change in voltage}}_{8} & \text{watts} \\ \underline{12} & \text{x} & \underline{230} & = & .345 \text{ watts or } 345 \text{ milliwatts} \\ \underline{1000} & & 8 \end{array}$

SYLVANIA RADIO TUBES

USE OF CURVES (Cont'd)

If more signal is available or if there is less signal, the end points selected may be different and the power correspondingly increased or decreased. If necessary to estimate the % 2nd. Harmonic Distortion, this is obtained from:

Avg. Current — Current at Operating Point x 100 Change in Current

 $\frac{(9\frac{1}{2} - 9)}{12} \times 100 = 4.15\%$

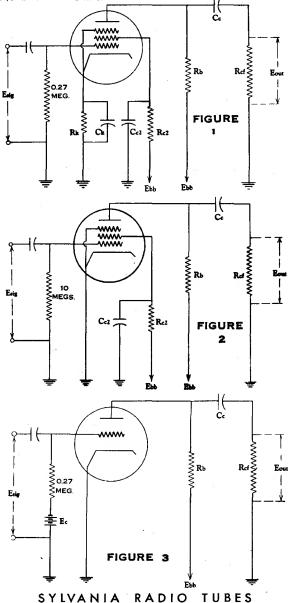
In cases where the best value of load is not known several lines may be drawn and the best one used.

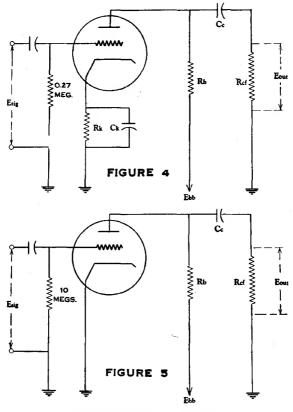
Although a triode was selected as an example the procedure for use of a load line for a pentode is the same providing the distortion is kept to a reasonably low value.

The plate resistance for conditions not given in the rating or on other curves, may be taken approximately as the slope of the tangent to the plate current curve at the point required. The dynamic plate resistance is usually higher than that obtained in this way. It can be seen from the shape of the curves why the selectivity obtained with RF pentodes at 100 volts plate and screen is not as good as that obtained under the 250 volt condition. The plate resistance acts like a resistor shunted across the tuned plate circuit.

Transfer Characteristic—is the name given to the curve showing Mutual Conductance, Plate Current, Plate Resistance or Amplification Constant plotted on the vertical scale and grid bias on the horizontal axis. Its main uses are in determining the operating range for tubes used with AVC voltage, and the selection of the best point for operating a grid biased detector or a converter. Servicemen may need this in selecting a tube with the proper cut-off characteristic for use in a given circuit.

The instantaneous plate currents found by adding or subtracting a value of peak signal voltage from the operating center can also be used in those cases where the impedance of the plate load is negligible. Examples of such cases are pentode broad-band amplifiers and relay operation where the load impedance is low compared to the tube plate resistance.


Conversion Characteristic—These are given only for converter type tubes and are shown in two different ways: Characteristics vs. oscillator grid current, and characteristics vs. control grid volts. The first of these is important in selecting the oscillator strength for operation over a required frequency range. Since no practical circuit has the same oscillator grid current at all frequencies it is necessary to compromise for best overall performance. The other curve against control grid volts is used similarly to the transfer characteristic in showing the desired range of AVC voltage to be applied.


Diode Load Curve—This may be used in designing AVC systems or vacuum tube voltmeters. Taking the curves given under type 7B6 as an example, the load current may be found for any applied signal voltage and any of several values of DC load resistance. With 25 volts RMS applied signal and 0.1 meg. load resistance, for example the load current will be 270 ua. and the developed bias 26.8 volts.

SYLVANIA RADIO TUBES

On the following pages are given the necessary data for the construction of resistance coupled amplifiers using the types of tubes commonly employed for this purpose. The data are necessarily quite condensed but with the aid of the five reference diagrams and the equations given on the following page for determining the size by-pass and coupling condensers, any serviceman should be able to build a good amplifier or check the design of one under repair.

Notice that data are given for use under all the B supply voltages commonly used with a given type. Values of gain are given for two different values of applied signal; the first a typical small signal likely to be found for the type and the second is the maximum which can be used without exceeding the 5% distortion limit.

SYMBOLS USED

Function	

Unit

Symbol	F unction	Unit
Rb	Plate Load Resistor	Megohms
Rc2	Screen Dropping Resistor	Megohms
Rcf	Grid Resistor of following Tube	Megohms
ЕЪЬ	Plate Supply Voltage	Volts
Eb	Plate Voltage at Plate	Volts
Ec or Ecl	Grid to Neg. Fil. Voltage	Volts
Ec2	Screen Grid Voltage	Volts
Esig	Input Signal	RMS Volts
Eout	Output to following Grid	RMS Volts
Ib	Plate Current	Ma.
Ic2	Screen Grid Current	Ma.
Cc	Coupling Condenser	mfd.
Cc2	Screen By-pass Condenser	mfd.

Values of capacity are not specified since these are dependent mostly on the frequency characteristic required in each individual case.

For low frequency limit = f_1

Symbol

$$Cc = \frac{1.6 \times 10^6}{f_1 \text{ Ref}} \text{ mfd.}$$

$$Ck = \frac{1.6 \times 10^6}{f_1 \text{ Rk}} \text{ mfd.}$$

$$Cc2 = \frac{1.6 \times 10^6}{f_1 \text{ Rc2}} \text{ mfd.}$$

Some text books show a more complicated method for calculating these by-pass condensers, but this method is quite rapid and gives conservative values. The loss due to incomplete bypassing will be less than 1% except for the cathode by-pass where it will be about 3%. The size condenser may be halved where economy is essential unless stages are cascaded and highest quality is required.

Zero Bias Operation

				Ebb	= 45 V	OLTS				•			Ebb =	67.5 \	OLTS							Ebb ·	= 90 V(OLTS			
ւ թ		0.27			0.47			1.0			0.27			0.47			1.0			ų. 3 7			0.47			1.0	
les		1.0			1.8			3.9	*		1.0			1.8			3.9			1.0			1.8			3.9	
lef	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10
b	.080	.080	. 080	.050	.050	.050	.025	.025	.025	. 145	. 145	.145	.087	.087	.087	.045	.045	.045	.22	.22	. 22	.13	.13	.13	.065	.065	.065
b	23.4	23 4	23.4	21.5	21.5	21.5	20.0	20.0	20.0	28.3	28.3	28.3	26.6	26.6	26.6	22.5	22.5	22.5	30.5	30.5	30 5	29.0	29.0	29.0	25.0	25.0	25.0
C1	.0232	.0232	.0232	.0146	.0146	.0146	.0077	.0077	.0077	.041	.041	.041	.025	.025	.025	.013	.013	.013	.061	.061	.061	.036	.036	.036	.0187	.0187	.0187
lc:	21.8	21.8	21.8	18.7	18.7	18.7	15.0	15.0	15.0	26.5	26.5	26.5	22.5	22.5	22.5	16.8	16.8	16.8	29.0	29.0	29.0	25.0	25.0	25.0	17.0	17.0	17.0
Caig	0.05	0:05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	01	0.1
lout	1.55	1.94	2.25	2.15	2.75	2.85	2.80	3.25	3.50	4.10	5.0	5.7	5.5	6.8	7.0	7.1	8.2	8.65	4.9	6.0	6.9	6.65	8.35	8.7	9.0	10.4	11.0
Fain	31.0	38.8	45.0	43.0	55.0	57.0	\$6.0	65.0	70.0	41.0	50.0	57.0	55.0	68.0	70.0	71.0	82.0	86.5	49.0	60.0	69.0	66.5	83.5	87.0	90.0	104	110
6 Distortion	2.10	1.90	1.20	2.00	1.70	1.60	2.90	2.40	2.0	1.80	1.30	1.60	1.70	2.0	2.1	2.30	2.50	2.70	.80	1.40	2.0	1.70	3.10	3.50	3.0	3.30	3.60
Csig (1)	0.13	0.17	0.19	0.12	0.15	0.15	0.1	0.11	0.11	0.26	0.28	0.30	0.21	0.23	0.24	0.15	0.17	0.17	0.34	0.34	0.34	0.28	0.28	0.28	0.18	0.18	0.17
Eout	3.95	6.0	7.55	5.0	7.40	7.6	5.60	6.50	6.90	9.85	12.6	15.2	10.4	13.9	14.8	10.0	12.8	13.4	14.4	17.5	20.0	16.5	20.3	21.0	15.1	17.4	17.6
Gain	30.4	35.3	39.7	41.6	49.3	50.6	56.0	59.0	62.7	37.9	45.0	50.6	49.6	60.3	61.8	66.8	75.3	78.8	42.4	51.5	58.9	59.0	72.5	75.0	84.0	96.8	103.5

Note (1) Maximum signal for 5.0% distortion .

FOR CIRCUIT SEE FIGURE 2

Zero Bias Operation

	ł			Ebb =	= 45 VC	olts							Ebb =	67.5 V	OLTS							Ebb =	= 90 V(OLTS			
Rb		0.27			0.47			1.0			0.27			0.47			1.0			0,27			0.4 7			1.0	
Rc:	 	1.5			2.7			5.6			1.5			2.7			5.6			1.5	<u> </u>		2.7			5.6	
Rcí	0.47 1.0 4.7			1.0	4.7	10.0	2.2	4.7	10.0	0.47	1.0	4.7	1.0	4.7	10.0	2.2	4.7	10.0	0.47	1.0	4.7	1.0	4.7	10.0	2.2	4.7	10.0
Ib (1)	0.066	0.066	0.066	0.043	0.043	0.043	0.023	0.023	0.023	0.125	0.125	0,125	0.077	0.077	0.077	0.04	0.04	0.04	0.189	0,189	0.189	0.114	0.114	0.114	0.059	0.059	0.05
ЕЪ	27.2	27.2	27.2	24.8	24.8	24.8	22,0	22.0	22.0	83.7	33.7	33.7	31.3	31,3	31.3	27.5	27.5	27.5	39.0	39.0	39.0	36.4	36.4	36.4	31.0	31.0	31.0
les	0.0142	0.0142	0.0142	0.009	0.009	0.009	0.0048	0, 004 8	0.0048	0.0259	0.0259	0.0259	0.0159	0.0159	0.0159	0.0082	0.0082	0,0082	0.0385	0.0385	0.0385	0.023	0.023	0.023	0.012	0.012	0.01
Ec:	23.7	23.7	23.7	20.7	20.7	20.7	18.1	18.1	18.1	28.6	28.6	28.6	24.5	24.5	24.5	21.6	21.6	21.6	32.2	32.2	32.2	27.9	27.9	27.9	22.8	22.8	22.8
Esig	0.05	0.05	0.05	0.05	0.05	0.05	9.05	0.05	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0,1	0.1	0.1	0.1
Eout	1.46	1.75	2.10	2.0	2.54	2.62	2.47	2.97	3.24	4.05	4.82	5.50	5.45	6.8	7.05	6.85	8.4	8.9	4.9	5.7	6.75	6.65	8.45	8.75	8.55	10.4	10.8
Gain	29.2	35.0	42.0	40.0	50.8	52.4	49.5	59.4	64.8	40.5	48.2	55.0	54.5	68.0	70.5	68.5	84.0	89.0	49.0	57.0	67.5 ·	66.5	84.5	87.5	85.5	104.0	108.0
% Distortion	2.2	1.9	1.5	2.4	2.0	1.7	3.1	2.2	2.1	2.3	1.8	1.6	3.1	2.3	2.2	4.0	3.2	2.8	1.1	0.9	0.7	2.0	1.2	1.2	2.4	1.7	1.7
Esig (2)	0.11	0.11	0.12	0.09	0.1	0.1	0.07	0.08	0.08	0.17	0.18	0.20	0.14	0.16	0.17	0.11	0.13	0.13	0.24	0.27	0.28	0.19	0.22	0.22	0.15	0.17	0.18
Eout	3.06	3.80	4.75	3.5	4.83	5.03	3,37	4.66	4.93	6.50	8,35	10,3	7.36	10.1	11,1	7.47	10.6	10.9	10.9	14.3	17.1	11.9	16.9	17.5	12.4	16.3	18.2
Gain	27.8	34.5	39.6	39.0	48.3	50.3	48.2	58.4	61.6	38.2	46.3	51.5	52.5	63.2	65,4	68.0	81.6	84.0	45.4	53.0	61.1	62.7	77.0	79.6	82.8	?6.0	101.0
% Distortion	4.7	4.2	4.6	4.5	4.7	4.5	4.3	4.7	4.3	4.7	4.8	4.9	4.9	4.7	4.9	4.6	4.9	4.7	4.7	4.7	4.8	4.7	4.8	4.7	4.9	4.8	5.0

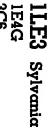
Note (1) Grid return to pin No. 8, Note (2) Maximum signal for 5.0% distortion.

FOR CIRCUIT SEE FIGURE 2

IFD

CЛ

S


S

YLVANIA

ᅍ ≻ σ

0

C σ m

Туре

RESISTANCE COUPLED AMPLIFIER DATA

Fixed Bias Operation

		Ē	bb = 4	5 VOLT	rs			Eł	ob = 67	.5 VOI	.TS			E	bb = 9	0 VOL	TS	
Rb	0.	047	0	. 10	. 0.	27	Q.	047	0	. 10	0.	. 27	0.	047	0.	10	0.	27
Rcf	0.10	0.27	0.10	0.47	0.27	0,47	0.10	0.27	0.10	0.47	0.27	0.47	0.10	0.27	0.10	0.47	0.27	0.47
Ib	0.30	0.282	0.20	0.174	0.086	0.082	0.50	0.46	0.31	0.273	0.14	0.132	0.70	0.64	0.45	0.38	0.199	0.187
Ec	0.7	-0.8	-0.6	-0.8	-0.7	-0.8	-1.2	-1.4	-1.1	-1.4	-1.0	-1.2	-1.8	-2.1	-1.5	-2.0	-1.5	-1.7
Eb ·	30.9	32.3	25.0	27.6	21.8	22.9	44	45.9	36.5	40.2	34.7	31.9	57.1	60.0	45.0	52.0	36.2	39.5
Esig	0.10	0.10	0.10	0.10	0.10	0.10	0.5	0.5	0.5	0.5	0,5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Eout	0.68	0.74	0.74	0.86	0.83	0.92	3.7	3.95	4.05	4.6	4.7	5.05	3.94	4.2	4.32	4.76	5.0	5.2
Gain	6.8	7.4	7.4	8.6	8.3	9.2	7,45	7.9	8.1	9.2	9.4	10.1	7.9	8.4	8.65	9.5	10.0	10.4
% Distortion	0.7	0.7	0.5	0.9	0.8	0.9	2.5	2.1	2.9	2.3	3.3	3.1	1.7	1.4	1.7	1.3	2.4	2.2
Esig (1)	0.50	0.56	0.42	0.56	0.50	0.56	0.85	0.99	0.78	0.99	0.7	0.85	1.27	1.48	1.06	1.41	1.06	1.2
Eout	3.33	4.1	3.1	4.85	4.22	5.2	6.3	7.8	6.3	9.1	6.6	8.6	10.0	12.4	9.15	13.4	10.6	12.5
Gain	6.66	7.32	7.4	8.65	8.44	9.3	7.42	7.88	8.1	9.2	9.4	10.1	7.88	8.4	8.65	9.5	10.0	10.4
% Distortion	4.4	4.5	4.1	4.6	5.0	5.0	4.6	4.9	5.0	5.0	4.8	5.0	4.7	5.0	4.7	5.0	5.0	5.0

Note (1) Peak signal equal to bias. Optimum bias chosen for 5% maximum distortion. Grid return to pin No. 8.

FOR CIRCUIT SEE FIGURE 3

S

Zero Bias Operation

			Ebb :	= 45 V	OLTS (See No	te 2)					- 1	Cbb = 6	7.5 VC	ITS						E	bb -= 9	VOL:	rs			
Rb		0.27			0.47		ł	1.0			0.27			0.47			1.0			0.27			0.47			1.0	
Ref	0.47	1.0	4.7	1.0	4.7	10.0	2.2	4.7	10.0	0.47	1.0	4.7	1.0	4.7	10.0	2.2	4.7	10.0	0.47	1.0	4.7	1.0	4.7	10.0	2.2	4.7	10.0
Ib	0.0075	0.0075	0.0075	0.0064	0.0064	0.0064	0.005	0.005	0.005	0.03	0.03	0.03	0.0242	0.0242	0.0242	0.0168	0.0168	0.0168	0.071	0.071	0.071	0.053	0.053	0.053	0.032	0,032	0.0
Eb	43	43	43	42	42	42	40	40	40.	59.4	59.4	59.4	56.1	56.1	56.1	50.7	50.7	50.7	70.8	70.8	70.8	65.1	65.1	65.1	58.0	58.0	58.0
Esig	.03	.03	.03	.03	.03	. 03	,03	.03	.03	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	. 168	. 200	. 234	.270	. 336	. 350	. 405	. 465	. 490	0.77	0.91	1.03	1.08	1.26	1,29	1.37	1.52	1.60	2.2	2.55	2.8	3.0	3.4	3.5	3.65	3.95	4.0
Gain	5.6	6.7	7.8	9.0	11.2	11.7	13.5	15.5	16.3	15.4	18.2	20.6	21.6	25.2	25.8	27.4	30,4	32.0	22.0	25.5	28.0	30.0	34.0	35.0	36.5	39.5	40.
% Distortion	5.1	5.0	4.9	4.5	4.2	3.8	3.9	3.7	3.6	3.5	3.3	2.9	3.2	2.9	2.8	2.6	2.3	2.2	2.7	2.4	2.1	2.5	2.1	2,0	2.6	2.3	2.
Esig (1)	.03	.03	.03	.03	.04	.04	.05	. 05	.05	0.07	Q.08	0.08	0.08	0.09	0.10	0.09	0.10	0.11	0.17	0.18	0.20	0.17	0.19	0.20	0.16	0.18	0.
Eout	. 168	. 200	. 234	. 270	. 445	. 465	0.67	0.76	0.81	1.07	1.44	1.63	1.7	2.24	2,50	2.43	2.97	3.45	3.60	4.45	5.40	4.89	6.20	6.65	5.66	6.80	7.
Gain	5.6	6.7	7.8	9.0	11.1	11.6	13.4	15.2	16.2	15.3	18.0	20.4	21.3	24.9	25.0	27.0	29.7	31.4	21.2	24.7	27.0	28.7	32.6	33.2	35.4	37.8	39.
% Distortion	5.1	5.0	4.9	4,5	5.2	5.1	5.2	5.0	4.9	4.7	4.7	4.6	4.7	4.5	4.8	4.5	4.5	4.7	4.6	4.3	4.7	4.5	4.5	4.7	4.5	4.65	4.

Note (1) Maximum signal for 5.0% Distortion. Note (2) Operation at Ebb = 45 volts is not recommended. Above 45 volt data is shown only to assist in determining end of life performance with 67.5 volt supply. For 45 volt supply type 1LD5 is recommended.

FOR CIRCUIT SEE FIGURE 5

Sylvania Type

m

S

Zero Bias Operation

				Epp =	45 VO	LTS				.	-	Eb	b = 67	.5 VOL	TS			а С				Ebb =	= 90 VO	DLTS			
Rb		0.27			0,47			1.0			0.27			0.47			1.0			0.27			0.47			1.0	
Rci		1.2		_	2.2			4.7			1.2			2.2			4.7			1,2			2.2			4.7	
Ref	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	1
Ib	0.060	0.060	0.060	0.038	0.038	0.038	0.018	0.018	0.018	0.123	0.123	0.123	0.075	0.075	0.075	0.036	0.036	0.036	0.187	0.187	0.187	0.112	0.112	0.112	0.056	0.056	0.
Eb	28.8	28.8	28.8	27.2	27.2	27.2	27.0	27.0	27.0	34.3	34.3	34.3	32.3	32.3	32.3	31.5	31.5	31.5	39.5	39.5	39.5	37.3	37.3	37.3	34.0	34.0	34.
lc:	0.0149	0.0149	0.0149	0.0095	0.0095	0.0095	0.005	0.005	0.005	0.029	0.029	0.029	0.0176	0.0176	0.0176	0.009	0.009	0.009	0.044	0.044	0.044	0.026	0.026	0.026	0.0134	0.0134	0.0
Ec:	27.1	27.1	27.1	24.1	24.1	24.1	21.5	21.5	21.5	32.7	32.7	32.7	28.8	28.8	28.8	25.3	25.3	25.3	37.2	37.2	37.2	32.8	32.8	32.8	27.0	27.0	27
Esig	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	P
Eout	1.58	1.96	2.25	2.15	2.80	2.90	2.85	3.40	3.65	2.28	2.80	3.30	3.2	4.17	4.33	4.28	5.1	5.5	5,5	6.9	8.0	7.9	10.0	10.2	10.3	12.1	12
Gain	31.6	39.2	45.0	43.0	56.0	58.0	57.0	68.0	73.0	45.7	56.0	66.0	64.0	83.3	86.6	85.6	102.0	110.0	55.0	69.0	80.0	79.0	100	102	103	1 21	1
% Distortion	2.9	2.6	2.6	4.0	3.0	2.8	3.8	3.3	3.2	2.0	1.8	1.7	2.3	1.9	1.8	2.6	2.1	2.0	2.2	1.8	1.5	2.6	1.9	1.8	3.2	3.0	3
Esig (1)	0.09	0.09	0.09	0.07	0.08	0.08	0.06	0.07	0.07	0.13	0.15	0.17	0.11	0.13	0.14	0.09	0.1	0.11	0.21	0.23	0.25	0.17	0.19	0.19	0.13	0.14	0
Eout	2.75	3.45	4.0	3.0	4.45	4.60	3.40	4.68	4.90	5.65	8.00	10.2	6,7	10.0	10.9	7.4	9.6	10.9	10.8	14.4	17.8	12.5	17.2	17.9	12.9	16.1	17
Gain	30.6	38.3	44.4	42.8	55.6	57.5	56.6	66.9	70.0	43.5	53.3	60.0	61.0	77.0	77.8	82.3	96.0	99.0	51.5	62.5	71.2	73.5	90.5	94.2	99.0	1 15	1
% Distortion	5.0	4.7	4.5	4.4	4.8	4.7	4.6	5.0	4.8	4.6	4.7	4.8	4.8	4.5	4.9	4.6	4.5	5.0	5.0	4.9	4.8	4.9	4.7	4.6	4.9	4.9	4

Note (1) Maximum signal for 5.0% distortion.

•

FOR CIRCUIT SEE FIGURE 2

30

S

YLVANI

A RADIO TUBES

lvania Type

Zero Bias Operation

				Ebb	= 45 V	OLTS							Ebb =	67.5	OLTS							Epp	- 98 V	OLTS			
Rb		0.27			0.47			1.0			8.27			0.47			1.0			0.27			0.47			1.0	
Rci		0.68			1.2			2.2			0.68			1.2			2.2			0.68			1.2			2.2	
Ref	0.47	1.0	4.7	1.0	4 .7	10	2.2	4.7	10	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10
16	.072	.072	.072	.043	.043	.043	.023	.023	.023	.134	.134	.134	.078	.078	.078	.041	.041	.041	. 20	. 20	.20	. 116	.116	.116	.06	.06	.06
ЕЪ	25.6	25.6	25.6	24.8	24.8	24.8	22.0	22.0	22.0	31.3	31.3	31.3	30.8	30.8	30.8	26.5	26 5	26.5	35.9	35.9	35.9	35.5	35.5	35.5	30.0	30.0	30.0
Ic:	· .042	.042	.042	.025	.025	.025	.0146	.0146	.0146	.07	.07	.07	.0421	.0421	.0421	.024	.024	.024	. 101	.101	. 101	.06	.06	.06	.034	.034	.03
Ect	16.5	16.5	16.5	15.0	15.0	15.0	12.9	12.9	12.9	20.0	20.0	20.0	17.0	17.0	17.0	14 6	14.6	14.6	21.3	21.3	21.3	18.0	18.0	18.0	15.0	15.0	15.0
Esig	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.1	0.1.	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1.	0.1	0.1	0.1	0.1
Eout	1.64	1.94	2.30	2.05	2.67	2.80	2.77	3.27	3.58	4.58	5.5	6.45	6.08	7.8	8.1	7.85	9.25	9.8	5.5	6.67	8.0	7.5	10.0	10.4	10.0	11.4	12.2
Gain	32.8	38.8	46.0	41.0	53.4	56.0	55.5	65.5	71.7	45.8	55.0	64.5	60.8	78.0	81.0	78.5	92.5	98.0	55.0	66.7	80.0	75.0	100	104	100	114	122
% Distortion	2.70	2.40	3,30	3.00	2.80	2.80	3.10	2.80	2.50	2.60	2.10	1.70	4.20	3.60	3.00	3.80	3.00	2.80	1.60	1.20	1.20	2.40	1.70	1.70	2.40	2.50	2.90
Esig (1)	0.09	0.10	0.11	0.08	0.09	0.09	0.07	0.09	0.09	0.16	0.18	0.20	0.12	0.15	0.15	0.12	0.13	0.14	0.24	0.26	0.27	0.17	0.19	0.20	0.16	0.16	0.1
Eout	2.85	3.75	4.97	0.13	4.76	4.90	3.83	5.65	6.05	7.0	9.6	11.9	7.2	11.1	11.5	9.3	11.3	12.8	12.5	1.59	19.4	12.3	17.7	19.0	14.9	17.2	18.4
Gain	31.7	37.5	45.2	39.1	52.8	54.5	54.8	62.7	67.2	43.7	53.2	59.5	60.0	74.0	76.6	77.5	87.0	91.5	52.0	61.2	71.9	72.3	93.1	95.0	93.1	107	115
% Distortion	4.60	4.70	4.50	5.00	4.70	4.50	4.20	4.90	4.60	4.70	4.70	4.80	5.00	4.90	4.80	4.80	4,50	4.70	4.90	4.90	4.90	5.0	4.30	4.70	4.50	4.70	4.90

FOR CIRCUIT SEE FIGURE 2

Zero Bias Operation

				Ebb -	= 45 V(OLTS							Ebb -	67.5	OLTS							Ерр	= 90 V	OLTS			
Rb		0 .27			8.47			1.0			0.27			0,47			1.0			0.27			0.47	l		1.0	
Rcz		1.0			1.8			3.9			1.0			1.8			3.9			1.0		_	1.8			3.9	
Rcf	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10	0.47	1.0	4.7	1.0	4.7	10	2.2	4.7	10
lþ	. 080	.080	. 080	.050	.050	.050	.025	.025	.025	. 145	. 145	. 145	.087	.087	.087	. 045	.045	.045	.22	.22	. 22	.13	.13	.13	.065	. 065	
Eb	23.4	23 4	23.4	21.5	21.5	21.5	20.0	20.0	20.0	28.3	28.3	28.3	26.6	26.6	26.6	22.5	22.5	22.5	30.5	30.5	30 5	29.0	29.0	29.0	25.0	25.0	25 .
Ic2	.0232	.0232	.0232	.0146	.0146	.0146	.0077	.0077	.0077	.041	.041	.041	.025	.025	. 025	.013	.013	.013	.061	.061	.061	.036	.036	.036	.0187	.0187	.01
Ec:	21.8	21.8	24.8	18.7	18.7	18.7	15.0	15.0	15.0	26.5	26.5	26.5	22.5	22.5	22.5	16.8	16.8	16.8	29.0	29.0	29.0	25.0	25.0	25.0	17.0	17.0	17.
Esig	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.
Eout	1.55	1.94	2.25	2.15	2.75	. 2.85	2.30	3.25	3.50	4.10	5.0	5.7	5.5	6.8	7.0	7.1	8.2	8.65	4.9	6.0	6.9	6.65	8.35	8.7	9.0	10.4	11
Gain	31.0	38.8	45.0	43.0	55.0	57.0	56.0	65.0	70.0	41.0	50.0	57.0	55.0	68.0	70.0	71.0	82.0	86.5	49.0	60.0	69.0	66.5	83.5	87.0	90.0	104	t
% Distortion	2.10	1.90	1.20	2.00	1.70	1.60	2.90	2.40	2.0	1.80	1.30	1.60	1.70	2.0	2.1	2.30	2.50	2.70	.80	1.40	2.0	1.70	3.10	3.50	3.0	3.30	3.
Esig (1)	0.13	0.17	0.19	0.12	0.15	0.15	0.1	0.11	0.11	0.26	0.28	0.30	0.21	0.23	0.24	0.15	0.17	0.17	0.34	0.34	0.34	0.28	0.28	0.28	0.18	0.18	0.
Eout	3.95	6.0	7.55	5.0	7.40	7.6	5.60	6.50	6.90	9.85	12.6 .	15.2	10.4	13.9	14.8	10.0	12.8	13.4	14.4	17.5	20.0	16.5	20.3	21.0	15.1	17.4	17
Gain	30.4	35.3	39.7	41.6	49.3	50.6	56.0	59.0	62.7	37.9	45.0	50.6	49.6	60.3	61.8	66.8	75.3	78.8	42.4	51.5	58.9	59.0	72.5	75.0	84.0	96.8	10
% Distortion	4.90	4.60	4.70	4.60	4.90	4.60	4.70	4.80	4.70	4.80	4.60	4.80	4.50	4.50	4.90	4.40	4.90	4.60	4.40	4.50	5.0	4.60	4.50	4.80	4.70	4.90	4

Note (1) Maximum signal for 5.0% distortion .

FOR CIRCUIT SEE FIGURE 2

32

Сл

Zero Bias Operation

Sylvania Type 1U4

				ЕЬЬ (S	= 45 V ee Note	OLÍS 2)							Ebb -	67.5 \	OLTS					•		Ерр	= 90 V	OLTS			
lb .		0.27			0.47		[1.0			0.27			0.47			1.0			0.27		1	0.47			1.0	
ła .		1.0			1.5			3.3			1.0			1.5			3.3			1.0			1.5			3.3	
Ref	0.47	1.0	4.7	1.0	4.7	10.0	2.2	4.7	10.0	0.47	1.0	4.7	1.0	4.7	10.0	2.2	4.7	10.0	0.47	1.0	4.7	1.0	4.7	10.0	2.2	4.7	10.0
ь	.048							I			.101						· · · · · ·		1				.11	.11	.054		·
СЬ	32.14			·		I						·				·		•				[38.3	38.3			36.0
C1	.0165																		ll						·		
aig	28.5	28.5	28.5	27.0	27.0	27.0	25.2	25.2	25.2	34.5	34.5	34.5	.05	32.25	.05	.05	.05	29.6	41.0	41.0	.05	.05	30.0	.05	.05	33.5	33.5
out	1.46	1.75	2.10		2.55	2.68	7.25	2.52	3.45	2.3	2.75	3.3	3.3	4.25	4.45	4.35	5.2	5.55	2.92	3.60	4.25	4.20	5.40		5.70	6.80	7.40
ain			· · · · · ·					·			55				89	87	104	•		_		84.0	108	112	113	136	148
% Distortion	3.4	3.4	3.9	4.2	4.3	4.0	4.1	4.4	4.9	2.0	2.0	2.0	2.3	2.3	1.9	3.8	3.6	3.3	1.4	1.2	1.3	1.3	1.1	0.9	2.5	2.2	1.8
Csig (1)	.06	.06	.06	.05	.05	.06	.04	.04	.05	.t0	.11	.11	.09	.10	.10	.06	.07	.07	0.13	0.15	0.15	0.13	0.15.	0.16	0.09	0.09	0.11
lout'	1.70	2.08	2.50	2.00	2.55	3.20	2.25	2.52	3.45	4.45	5.9	7.0	5.8	8.35	8.60	5.20	7.15	7.6	7.35	10.3	12.0	10.4	15	16.5	10	11.8	15.1
Gain	28.3	34.8	41.7	40	51	\$3.4	\$6.3	63.1	69.0	44.5	\$3.5	63.5	64.5	83.5	86.0	86.8	102	108	56.5	68.8	80	80	100	103	111	131	138
6 Distortion	4.4	4.3	4.5	4.2	4.3	4.9	4.1	4.4	4.9	4.6	5.0	4.8	4.8	4.9	4.1	4.6	5.0	4.6	4.4	5.0	4.8	4.8	4.9	5.0	4.9	4.4	4.6

S

ω

				Zero	Bias				ΓΑΙ	NC	E (Co	UF	LED	A	MI	PLI	FIE	R		TA Bias	Ope	ratio
		Eb	b = 1 00	Volts					Ерр	- 250	Volta							Ebb	= 100	Volts			
	. 10		0.27		0.	47	•	. 1		• .27		•.	47	Rb		۰.	10		0.27		•.	47	
0.2	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0	Ref		0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27
														Rk		3300	3300	5600	6800	6800	10,000	10,000	1200
0.3	0.39	0.192	0.192	0.192	0.124											0.340	0.340	0.175	0.168	0.168	0.112	0.107	1.20
	1											Ec	- -	-1.122	-1.122	-0.980	-1.142	-1.142	-1.120	-1.070	-1.44		
61.0	61.0	48.2	48.2	48.2	41.7	41.7	102.0	102.0	74.5	74.5	74.5	62.0	62.0	Eb	e	56.0	66.0	52.7	54.7	54.7	47.4	49.7	130.0
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	Esig		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
3.6	3.80	3.70	4.00	4.30	3.90	4.35	4.85	5.20	5.05	5,40	5.60	5.20	5.60	Eout		3.40	3.60	3.45	3.80	4.10	3.70	4.05	4.60
36.0	38.0	37.0	40.0	43.0	39.0	43.5	48.5	52.0	50.5	54.0	56.0	52.0	56.0	Gain	18	34.0	36.0	34.5	38.0	41.0	37.0	40.5	46.0
2.0	1.9	2.3	1.7	1.3	1.9	1.4	0.4	0.4	0.8	0.7	0.6	0.8	0.6	% Di	st.	2.2	2.0	2.4	1,9	1.6	2.0	1.4	0.6
0.2	0.23	0,19	0.24	0.28	0.22	0.29	0.72	0.75	0.56	0.67	0.78	0.60	0.78	Esig	(!)	0.21	0.22	0.20	0.23	0,24	0.22	0.27	0,53
7.4	8.4	6.7	9.3	11.0	8.2	11.5	30.5	33.0	25.0	31.5	38.0	27.5	37.5	Eout		6.90	7.80	7.05	8.60	9.70	8.15	10.7	23.5
35.2	36.5	35.2	38.8	39.3	37.2	39.7	42.4	44.0	44.6	47.0	48.7	45.8	48.1	Gain	1	32.8	34.4	35.2	37.4	40.4	37.0	39.6	44.3
4.9	5.0	4.8	4.9	5.0	4.8	5.0	4.8	4.9	5.0	5.0	4.9	5.0	5.0	% Di	st.	5.0	4.9	4.9	4.8	4.2	4.9	4.3	3.1

ion

Ebb = 250 Volts

Sylvania

Түрө

0.27 .47 0.19 27 0.47 0.27 0.47 1.0 0.47 1.0 1200 2700 2700 3300 3900 4700 ١Q 1.20 0.550 0.550 0.510 0.345 0.32 90 -1.440 -1.485 -1.485 -1.682 -1.345 -1.52 440 130.0 101.5 101.5 112.3 88.0 97.7 0.1 0.1 0.1 0.1 0.1 0.1 4,95 4,90 5.05 4.70 4.9 4.6 49.0 49.5 49.0 50.5 47.0 46.0 0.8 0.9 0.7 0.6 0.6 0.6 0.53 0.53 0.53 0.68 0.46 0.59 24.0 25.2 33.0 22.3 29.5 24.0 47.6 48.5 48.4 50.0 45.3 45.3 3.8 3.7 5.0 4.8 5.0 4.8 4.9 5.0 5.0 4.9 5.0 5.0 % Dist. 5.0 4.9 4.9 4.8 4.2 4.9 4.3 3.1 2.9 4.9 4.0 4.2

(1) Maximum Signal For 5.0% Distortion

(1) At Grid Current Point, Less Than 1/8 Microampere Grid Current Through 0.27 Megohm Grid Resistor.

FOR CIRCUIT SEE FIGURE 5

FOR CIRCUIT SEE FIGURE 4

S ≺ LVANIA ᅍ σ Ó -C σ m. S

ŝ

Rb

Ref

Rk

в

Ec

Eb

Esig

Eout

Gain

% Dist.

Esig(1)

Eout

Gain

% Dist.

	0										Sel	f Bia	8 O	peration						~					
						Ерр	= 100 V	OLTS											Ерр	- 150 V	OLTS				-
	Rb		. 047			.1			. 27			. 47		Rь		. 047			.1			. 27			. 47
	Rc2		. 22]	. 39			1.0		1	.8		Re2		. 22	·		.47			1.2		2	. 2
[Ref	.047	.10	.27	. 10	.27	.47	.27	.47	1.0	.47	1.0		Ref	.047	. 10	.27	. 10	. 27	.47	.27	.47	1.0	.47	1.0
1	Rk	680	680	680	1500	1500	1500	3300	3300	3300	5600	5600		Rk	470	470	470	1000	1000	1000	2200	2200	2200	3900	3900
	Ib	1.13	1.13	1.13	.61	.61	.61	.265	. 265	.265	. 158	.158		Іь	1.86	1.86	1.86	.97	.97	. 97	.41	.41	.41	.24	.24
	Ic2	. 280	. 280	. 280	. 167	. 167	. 167	.074	.074	.074	.043	.043		Ic2	.460	.460	. 460	. 234	.234	.234	.101	. 101	.101	.057	.057
1	Ec1	-0.96	-0.96	-0.96	-1.17	-1.17	-1.17	-1.12	-1.12	-1.12	-1.12	-1.12		Ec1	-1.09	-1.09	-1.09	-1.20	-1.20	-1.20	-1.13	-1.13	-1.13	-1.16	-1.16
	Ec2	38.4	38.4	38.4	35.0	35.0	35.0	26.0	26.0	26.0	22.6	22.6	-	Ec2	48.9	48.9	48.9	40.0	40.0	40.0	28.9	28.9	28.9	24.5	24.5
	Eb	46.9	46.9	46.9	39.0	39.0	39.0	28.5	28.5	28.5	25.7	25.7		Eb	62.6	62.6	62.6	53.0	53.0	53.0	39.1	39.1	39.1	37.0	37.0
	E sig.	0.1	0.1	0.1	0,1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		E sig.	0.1	0.1	0.1	0.1	0.1	0'.1	0.1	0.1	0.1	0.1	0.1
1	E out	4.2	5.7	6.7	5.4	7.7	8.3	7.6	9.0	10.5	8.5	10.5		E out	5.2	6.9	8.4	7.2	9.8	10.7	10.4	12.1	14.2	11.7	14.8
	Gain	42	57	67	54	77	83	76	90	105	85	105		Gain	52	69	84	72	98	107	104	121	142	117	148
[% Dist.	3.3	2.7	2.1	2.9	2.0	1.6	2.0	2.1	3.0	2.0	2.3		% Dist.	2.2	1.7	1.0	2.3	1.6	1.2	2.4	1.4	1.0	2,4	1.4
- E	E sig. (1)	0.15	0.17	0.20	0.14	0.20	0.22	0.16	0.8	0.20	0,15	0.17		E sig. (1)	0.22	0.26	0.31	0.17	0.23	0.25	0.17	0.20	0.22	0.16	0,19
	E out	6.2	9.2	12.8	7.5	14.4	17.0	11.5	15.7	20.7	12.6	17.7	. '	E out	11.2	17.0	24.0	11.9	21.6	25.0	17.2	23.2	29.5	18.5	26.8
-	Gain	41.3	54.1	64.0	53.5	72.0	77.5	72.0	87.2	103	84.0	104	' I	Gain	50.8	65.4	77.5	70.0	93.9	100	101	116	134	115	141
	% Dist.	4.8	5.0	5.0	4.7	4.9	5.0	4.6	4.6	4.5	4.7	4.6		% Dist.	4,9	4.9	5.0	4.8	4.9	4.8	4.9	4.8	4.8	4.9	5.0

Note (1) For self bias operation this is taken at the grid current point with less than 1/8 Microampere grid current.

~ LVANI ⊳ R 0 O œ ш Ś

S

.

β

FOR CIRCUIT SEE FIGURE 1

Ò Ð 6B

C

6BF

S

ylvania

Туре

		E	Ъв = 10	0 VOLT	s		1	1	Звь = 25	0 VOLT	S	
Rb	0.	047	0	.1	0	. 27	0.	047	0	.1	0	. 27
Ref	0.1	0.27	0.1	0.47	0.27	0.47	0.1	0.27	0.1	0.47	0.27	0.47
Rk	1200	1500	2200	2700	6800	8200	680	820	1200	1800	3900	4700
Іь	1.12	1.04	0.61	0.58	0.24	0.226	3,23	3.07	1.75	1.57	0.67	0.63
Ec	-1.34	-1.56	-1.34	-1.57	-1.64	-1.85	-2.20	-2.52	-2.10	-2.83	-2.61	-2.96
Eb	47.4	51.1	39.0	42.0	35.1	39.0	98.0	106.7	75.0	93.0	69.0	80.0
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.5	0.5	0.5
Eout	1.95	1.90	1.85	2.0	1.91	1.88	11.0	11.2	10.8	11.2	9.9	10.0
Gain	19.5	19.0	18.5	20.0	19.1	18.8	22.0	22.4	21.6	22.4	19.8	20.0
% Distortion	.56	.42	.54	.35	.31	.37	1.4	1.2	1.8	. 89	1.1	.71
Esig (1)	0.43	0.60	0.44	0.58	0.63	0.79	1.07	1.31	0.97	1.52	1.34	1.62
Eout	8.2	11.4	8.0	11.6	11.8	14.5	23.4	28.8	20.8	33.2	26.5	32.3
Gain	19.0	19.0	18.2	20.0	18.7	18.4	21.8	21.9	21.4	21.9	19.8	20.0
% Distortion	4.1	4.9	4.5	4.0	4.8	4.9	5.0	4.7	4.5	4.7	4,9	4.6

Self Bias Operation Single Section of Types 6BF7 or 6BG7

Note (1) For self bias operation this is taken at the grid current point with less than 1/8 microampere grid current.

FOR CIRCUIT SEE FIGURE 4

S VANI ⊳ 70 ≻ σ Ó œ m S

Self Bias Operation

Zero Bias Operation

(1) Maximum signal for 5.0% distortion.

Sylvania Type 6BK6

Sylvania

Түр

တ

26B

			Epp -	- 109 V	OLTS					BPP .	= 250 V	OLTS		
Rb		.1	1	0,27		0	.47	0	.1		0.27		0.	47
Ref	0.27	0.47	0.27	0.47	1,0	0.47	1.0	0.27	0.47	0.27	0,47	1.0	0.47	1.0
Rk	4700	5600	8200	10,000	10,000	12,000	15,000	1800	1800	3300	3300	3900	4700	5600
Ib	.23	.204	.132	.117	.117	.092	.08	.84	.84	.45	.45	.41	, 30	. 28
Ec	-1.08	-1.143	-1.03	-1.17	-1.17	-1.10	-1.2	-1.51	-1.51	-1.49	-1,49	-1.59	-1.41	-1.57
ЕЪ	77.0	79.6	64.4	68.4	68.4	56.8	62.4	166.	166.	128.	128.	139.	109.	118.5
Esig.	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0,1	0.1	0.1
Eout	3.6	3.8	4.2	4.35	5.0	4.7	5.2	5.4	5.7	6.1	6.6	6.9	6.6	7.1
Gain	36.0	38.0	42.0	43.5	50.0	47.0	52.0	54.0	57.0	61.0	66.0	69.0	66.0	71.0
% Dist.	3.4	3.4	3.6	3.2	2.6	3.2	2.6	0.3		0.5	0,2	0.2	0.4	0.2
Esig. (1)	.14	.14	.11	.14	.17	. 13	. 17	.5	.5	.41	.45	. 54	.38	.48
Eout	5.0	5.2	4.6	6.0	8.3	6.1	8.5	26.5	28.5	24.5	29.0	37.0	25.0	33.5
Gain	35.7	37.2	41.8	42.9	48.8	46.9	50.0	53.0	52.0	59.8	64.4	68.5	65.8	69.8
% Dist.	5.0	5.1	4.1	4.9	5.1	4.4	5.0	5.0	4.4	4.95	4.4	4.8	4.1	4.2

			Ерр :	- 100 V	OLTS					Ebb -	- 250 V	OLTS		
Rb	0	.1		0.27		0.	47	0.	1		0.27		0.	47
Ref	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0
Rk														
Іь	. 255	. 255	. 146	. 146	.146	.100	.100	1.16	1.16	. 57	, 57	.57	.355	. 355
Ec														
ЕЬ	74.5	74.5	60.6	60.6	60.6	53	53	134.	134.	123.	123.	123.	83.	83.
Esig.	0.1	0.1	0,1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	3.9	4.2	4.35	5.0	5.5	4.85	5.7	6.0	6.3	6.6	7.2	7.7	7.3	8.0
Gain	39	42	43.5	50	55	48.5	57	60	63	66	72	77	73	80
% Dist.	3.0	2.7	3.4	2.6	2.0	2.9	2.0						0.3	
Esig. (1)	.14	. 15	.13	.15	. 18	.14	.18	.52	.56	.43	.5	. 57	.42	. 53
Eout	5.3	6.1	5.6	7.2	9.3	6.7	8.5	28.5	32.0	26.5	33.0	40.5	29.0	39.0
Gain	37.9	40.7	43	48	51.7	47.8	47.2	54.8	57.1	61.6	66	71.1	69.	73.6
% Dist.	4.8	4.8	4.8	4.7	4.9	4.7	4.8	4.8	5.0	4.9	5.0	4.9	4.8	4.8

(1) At grid current point, less than 1/8 Microampere grid current through 0.27 megohm grid resistor.

FOR CIRCUIT SEE FIGURE 5

FOR CIRCUIT SEE FIGURE 4

LVANIA RADIO TUBES

S ≺

BBU

Sylvania

Түре

		·E	bb = 10	0 VOLT	s			E	bb = 25	0 VOLT	s	
Rb	0.	047	0	.1	0.	27	0.	047	0	.1	0.2	27
Ref	0.1	0.27	0.1	0.47	0.27	0.47	0.1	0.27	0.1	0.47	0.27	0.47
Rk	1800	2200	2700	3900	6800	8200	1500	1800	2200	3300	5600	8200
Іь	1.07	1.0	0.62	0.56	0.256	0.240	2.85	2.69	1.63	1.46	0.661	0.60
Ee	-1,93	-2.2	-1.67	-2.18	-1.74	-1.97	-4.27	-4.84	-3.59	-4.82	-3.70	-4.92
Eb	49.6	53.0	38	44	31	35.2	116	123.8	87	104	71.8	88
Esig	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.0
Eout	5,3	5.4	5.6	5.8	5.7	5.8	11.2	11.8	11.8	12.4	12.1	12.2
Gain	10.6	10.8	11.2	11.6	11.4	11.6	11.2	11.8	11.8	12.4	12.1	12.2
% Distortion	1.2	1.9	2.0	1.8	2.2	1.8	1.3	1.2	1.8	1.3	1.8	1.3
Esig (1)	1.02	1.24	0.87	1.23	0.97	1.10	2.80	3.25	2.23	3.27	2.40	3.32
Eout ·	10.6	13.2	9.5	14.2	11.0	12.8	31.2	38.0	26.0	40.4	28.5	40.6
Gain	10.4	10.6	10.9	11.5	11.3	11.6	11.1	11.7	11.7	12.3	12.1	12.2
% Distortion	4.5	4.9	4.7	4.8	4.9	4.3	4.5	4.6	4.4	4.5	4.5	4.9

Self Bias Operation

Note (1) For self bias operation this is taken at the grid current point with less than 1/2 microampere grid current.

FOR CIRCUIT SEE FIGURE 4

Self Bias Operation

		E	66 - 18	NOLT	s			ЕЫ	b = 25	VOL1	"S	
Rb	9.0	47	0	.1	0.	27	0.0	47	0	.1	•	27
Rcf	0.1	0.27	0.1	0.47	0.27	0.47	0.1	0.27	0.1	0.47	0.27	0.47
Rk	1200	1200	2200	2700	6800	8200	1000	1000	1500	1800	4700	6800
Ib	1.22	1.22	.66	.628	.259	.246	3.2	3.2	1.78	1.72	.684	.63
Ec	1.465	1.465	1.45	1.695	1.76	2.02	3.2	3.2	2.67	3.10	3.21	4.28
Eb	42.7	42.7	34	37.2	30	33.6	150.5	150.5	72	78	65	80
Esig	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.0
Eout	6.25	6.6	6.35	6.75	6.3	6.3	13.5	14.1	13.8	14.3	13,4	13.2
Gain	12.5	13.2	12.7	13.5	12.6	12.6	13.5	14.1	13,8	14.3	13.4	13.2
% Distortion	4.0	3.6	4.3	2.9	3.0	2.5	3.3	3.1	3.8	2.8	2.5	2.0
Esig (1).	0.65	0.65	0.57	0.77	0.71	0.98	1.70	1.70	1.34	1.70	1.80	2.52
Eout	8.1	8.6	7.2	10.4	8.9	12.4	23.0	24.0	18.5	24.5	24.1	33.1
Gain	12.5	13.2	12.6	13.5	12.5	12.6	13.5	14.1	13.8	14.3	13.4	13.1
% Distortion	4.8	4.4	4.8	4.6	4.6	5.0	4.9	4.6	5.0	5.0	4.9	5.0

(1) At grid current point, less than 3/2 microampere grid current.

FOR CIRCUIT SEE FIGURE 4

S LVANI R σ O -iπ. S

Self Bias Operation

	j.	E	3bb = 10	I VOLT	s			Ebl	- 25 0	VOLT	5	
Rb	0.0	947	0	.1	0.	27	0.0	47	. 0	.1	0.	27
Ref	0.1	0.27	0.1	0.47	0.27	0.47	0.1	0.27	0.1	0.47	0.27	0.47
Rk	1800	2200	2700	3900	6800	8200	1800	1800	2700	3900	6800	8200
ІЬ	0.98	0.90	0.58	0.51	0.24	0.227	2.50	2.50	1.45	1.28	0.60	0.57
Ec1	- 1.765	-1.98	-1.565	-1.99	- 1.63	-1.86	- 4.50	- 4.50	-3.92	- 4.99	+4.08	-4.67
Eb	54	57.7	42	49	35.2	38.7	132.5	132.5	105	122	88	96
Esig	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.0
Eout	5.75	6.0	6.15	6.65	6.5	6.7	12.6	13.45	13.2	14.25	13.6	14.1
Gain	11.5	12.0	12.3	13.3	13.0	13.4	12.6	13.45	13.2	14.25	13.6	14.1
% Distortion	2.0	1.7	2.4	1.7	2.3	1.9	1.5	1.2	1.9	1.3	1.9	1.6
Esig (1)	0.92	1.1	0.8	1.1	0.86	1.0	3.07	3.07	2.5	3.3	2.58	3.0
Eout	10.55	12	9.8	14.6	11.1	13.3	38.4	41.2	32.6	46.8	35.0	42.0
Gain	11.5	12.0	12.25	13.3	12.9	13.3	12.5	13.4	13.05	14.2	13.55	14.0
% Distortion	4.0	4.0	4.1	4.1	4.5	4.1	5.0	4.0	5.0	4.8	5.0	5.0

Note (1) At grid current point, less than 1/2 microampere grid current.

FOR CIRCUIT SEE FIGURE 4

Self Bias Operation

	[Ē	bb = 10	e Volt	s	l		Ebt	- 206	VOLT	'S	
Rb	0.0	47	0.	10	•.	27	9.0	47	0.	10	0.	27
Rcf	0.10	0.27	0.10	0.47	0.27	0.47	0.10	0.27	0.10	0.47	0.27	0.47
Rk	1200	1500	2200	3300	8200	10,000	680	820	1500	2200	5600	6800
Ib	1.35	1.28	0.715	0.64	0.26	0.244	3.10	2.96	1.53	1.41	0.56	0.535
Ec	-1.62	1.92	1.57	-2.11	-2.13	-2.44	-2.11	-2.43	-2.29	-3.10	-3.14	-3.64
Eb	36.5	39.8	28.5	36.0	29.8	34.1	54.2	61.0	47.0	59.5	49.0	55.8
Esig	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.0
Eout	6.3	6.35	6.1	6.2	5.8	5.85	14.0	14.2	13.2	13.2	12.1	12.1
Gain	12.6	12.7	12.2	12:4	11.6	11.7	14.0	14.2	13.2	13.2	12.1	12.1
% Distortion	3.1	2.6	3.4	2.1	2.3	1.8	4.3	3.5	4.0	2.3	2.4	2.0
Esig (1)	0.66	0.89	0.62	1.00	1.00	1.21	1.01	1.25	1.14	1.69	1.71	2.05
Eout	8.3	11.3	7.6	12.4	11.6	14.2	14.1	17.7	15.0	22.3	20.6	24.7
Gain	12.6	12.7	12.2	12.4	11.6	11.7	14.0	14.2	13.2	13.2	12.1	12.1
% Distortion	4.8	4.7	4.3	4.5	5.0	5.0	4.5	4.8	4.8	4.7	4.8	4.7

Ivania

Түре

6K4

Note (1) Maximum signal at grid current point less than 1/4 microampere.

FOR CIRCUIT SEE FIGURE 4

Self Bias Operation

		E	bb - 10	0 VOLT	s		1	Eb	ob ≈ 25	0 VOL	TS -	
Rb	.0	47.	0.	10	0.	27	.0	17	θ.	10		.27
Rcf	0.10	0.27	0.1	0.47	.27	.47	.10	.27	.10	.47	.27	.47
Rk	2200	2700	3300	5600	10,000	12,000	1800	2200	2700	4700	8200	10,000
Ib	1.0	.92	.59	.48	.227	.213	2.70	2.49	1.54	1.27	.60	.56
Ec	2.20	2.48	1.95	2.68	2.27	2.56	4.86	5,48	4.16	5.96	4.92	5.6
Eb	53	56.7	41	52	38.6	42.5	123	133	96	123	88	99
Esig	0.50	.50	.50	.50	.50	.50	1.0	1.0	1.0	1.0	1.0	1.0
Eout	5.7	6.10	6.0	6.3	6.25	6.65	12.4	12.8	12.9	13.4	13.4	13.9
Gain	11.40	12.20	12.0	12.6	12.5	13.30	12.40	12.80	12.90	13.40	13.40	13.90
% Distortion	1.8	1.6	1.8	1.6	2.0	1.4	1.3	1.2	1.7	1.2	1.6	1.2
Esig (1)	1.2	1.4	1.00	1.55	1.10	1.45	3.20	3.64	2.60	4.0	3.10	3.50
Eout	13.7	17.0	12.0	19.5	13.7	19.1	39.2	46.5	33.4	53.5	41.6	48.5
Gain	11.40	12.15	12.0	12.6	12.5	13.15	12.3	12.75	12.75	13.35	13.40	13.85
% Distortion	4.60	5.0	4.5	5.1	5.0	4.90	4.5	4.5	4.4	5.0	5.1	4.6

Note (1) At grid current point, less than 3/4 microampere grid current.

FOR CIRCUIT SEE FIGURE 4

6L5G Sylvania Type

Self Bias Operation Single Section of Type 6N7GT

		Ē	bb = 10	W VOLT	s			ЕЫ	5 = 256	VOLT	s	
Rb	6.0	047	0	.1	0.	27	0.	047	0	.1	0.	27
Rof	0.10	.27	.10	.47	.27	.47	.10	.27	.10	47	.27	.47
Rk	1800	1800	2700	3300	6800	6800	1000	1200	1500	1800	3300	3900
Ib	.81	.81	.51	.469	.225	.225	2.36	2.21	1.45	1.36	.64	.61
Ec	1.46	1,46	1.38	1.55	1.53	1.53	2.36	2.65	2.18	2.45	2.11	2.38
Eb	61.9	61.9	49	53.1	39.2	39.2	139	146	105	114	77	85.5
Esig	.10	.10	.10	.10	.10	.10	.50	.50	.50	.50	.50	.50
Eout	1.74	1.93	1.93	2.2	2.23	2.38	10.0	10.9	10.9	12.5	12.8	13.0
Gain	17.4	19.3	19.3	22.0	22.3	23.8	20.0	21.8	21.8	25.0	25.6	26.0
% Distortion	1.2	1.0	1.3	1.0	1.3	1.1	1.8	1.8	2.6	2.2	2.7	2.4
Esig (1)	.40	.40	.30	.50	.42	.42	1.20	1.40	1.00	1.22	.90	1.1
Eout	6.85	7.65	5.76	10.9	9.34	10.0	23.8	30.4	21.8	30.5	23.0	28.8
Gain	17.1	19.1	19.2	21.8	22.0	23.8	19.8	21.7	21.8	25.0	25.6	26.2
% Distortion	4.7	3.7	3.7	4.8	5.0	4.2	4.5	4.9	4.8	4.7	4.7	5.0

Note (1) At grid current point, less than 1/2 microampere grid current.

FOR CIRCUIT SEE FIGURE 4

òpia .0 Туре

RESISTANCE COUPLED AMPLIFIER DATA

Self Bias Operation

Zero Bias Operation

~			Epp :	- 100 V	OLTS					Ebb =	250 V	OLTS						Ebb =	= 100 V	OLTS					Ebb =	250 V	OLTS		
Rb	0	.1		0.27		0.	47	0.	1		0.27		•.	47	Rb	0	.1		0.27		0.	47	0.1			.27			.47
Rcf	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0,47	1.0	Rcí	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0
Rk	3300	3300	5600	5600	6800	8200	10.000	1800	2200	3300	3900	4700	5600	6800	Rk														
db	. 288	. 288	. 161	. 161	.146	. 108	. 099	.95	.88	. 476	. 46	.425	. 31	. 29	Ib	0.325	0.325	0.17	0.17	0.17	0.1125	0.1125	1.35	1.35	0.65	0.65	0.65	0.385	5 0.38
Ec	.95	.95	.9	.9	.99	. 89	.99	1.71	1.94	1.57	1.79	2.0	1.73	1.97	Ec														
Eb	71.2	71.2	56.5	56.5	60.6	49.2	53.5	155.	162.	121.5	125.8	135.2	104.4	113.7	Eb	67.5	67.5	54.1	54.1	54.1	47.1	47.1	115	115	74.5	74.5	74.5	69	69
Esig.	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	Esig.	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	3.53	3.82	4.1	4.53	4.73	4.63	4.9	4.23	4.4	4.9	5.2	5.4	5.3	5.7	Eout	3.7	3.8	4.35	4.6	4.83	4.6	5.2	4.5	4.75	5.2	5.8	5.8	5.7	6.2
Gain	35.3	38.2	41.	45.3	47.3	46.3	49.	42.3	44.	49.	52.	54.	53.	57.	Gain	37.0	38.0	43.5	46.0	48.3	46.0	52.0	45.0	47.5	52.0	58.0	58.0	57.0	62.0
% Dist.	.55	0.9	1.6	1.2	1.1	1.5	1.2	.3	.3	. 25	. 3	.3	. 2	. 25	% Dist.	0.806	0.72	1.58	1.17	0.88	1.56	0.985	0.583	0.61	0.53	0.65	0.65	0.5	0.64
Esig. (1)	.23	.24	. 19	.2	.25	.19	.25	. 79	. 89	.63	. 77	.91	. 71	. 86	Esig. (1)	0.26	0.28	0.21	0.24	0.28	0.21	0.26	0.9	0.96	0.76	0.87	0.97	0.74	0.88
Eout	8.	8.9	7.75	8.93	11.8	8.7	12.2	33.3	38.5	30.8	39.6	49.	37.5	48.6	Eout	8.8	9.8	8.25	10.5	12.5	9.2	12.5	37.0	41.7	36.5	44.2	53.0	39.3	50.0
Gain	34.8	37.1	40.8	44.6	47.2	45.8	48.8	42.2	43.3	48.9	51.4	53.9	52.8	56.6	Gain	33.8	35.0	39.3	437	44.6	43.8	48.1	41.2	43.4	48.0	50.8	54.6	53.1	56.8
% Dist.	3.6	3.4	3.95	3.4	4.15	3.9	4.6	3.67	4.28	3.4	4.3	4.75	4.8	4.95	% Dist.	4.71	4.9	4.96	4.79	4.96	4.8	4.78	4.8	4.88	4.86	4.96	4.88	4.89	4.89

Note (1) For self bias operation this is taken at the grid current point with less than 1/6 Microampere grid current.

FOR CIRCUIT SEE FIGURE 4

FOR CIRCUIT SEE FIGURE 5

S

Self Bias Operation

			Ebb -	- 100 V	OLTS					Ebb -	- 250 V	OLTS		
Rb		.1		0.27		0	47	•	.1		0.27		0.	47
Rcz	0.	39		1.2		1	.8	0.	39		1.2		2	. 2
Rcf	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0
Rk	1200	1200	2700	2700	2700	4700	4700	560	560	1200	1200	1200	1800	1800
Ib	0.645	0.645	0.259	0.259	0.259	0.165	0.165	1.77	1.77	0.675	0.675	0.675	0.402	0.40
let	0.18	0.18	0.068	0.068	0.068	0.045	0.045	0.50	0.50	0.183	0.183	0.183	0.102	0.10
Ec1	0.99	-0.99	0 882	-0.882	-0.882	-0.99	-0.99	- 1.27	- 1.27	-1.03	- 1.03	-1.03	-0.908	-0.90
Ec:	29.8	29.8	18.5	18.5	18.5	19.0	19.0	55	55	30.5	30.5	30.5	25.5	25.5
Eb	35.5	35.5	30.2	30.2	30.2	22.5	22.5	73	73	67.8	67.8	67.8	61.2	61.2
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	6.85	7.8	8.2	10.2	12.5	10.2	13.1	10.2	11.5	13.6	17.9	21.6	19.5	25.6
Gain	68.5	78.0	82	102	125	102	131	102	115	136	179	216	195	256
% Distortion	0.6	0.7	3.4	2.6	2.3	2.8	3.2	0.7	0.8	2.2	1.8	1.5	3.1	2.4
Esig(1)	0.2	0.2	0.14	0.14	0.14	0.13	0.13	0.5	0.5	0.25	0.25	0.25	0.15	0.15
Eout	13.15	14.9	11.1	13.9	17.2	12.8	16.6	47	54	33	41.8	50	28	37
Gain	65.8	74.5	79.4	99.5	123	98.5	128	94	108	132	167.5	200	187	247
% Distortion	3.0	2.9	5.1	4.3	3.7	4.6	5.0	4.2	5.0	5.2	4.4	4.7	4.5	3.7

Note (1) At grid current point, less than 1/2 microampere grid current.

FOR CIRCUIT SEE FIGURE 1

LV A N I ᅍ ≻ 0 0 œ ш S

Self Bias Operation Type 7A4 or Single Section of Type 7N7

			Ebb = 1	IOO VOL	TS	Ebb = 250 VOLTS									
кр		. 647	•	. 19		. 27	0	.047	0	10	0	. 27			
Ref	0.1	0.27	0.1	0.47	0.27	0.47	0.1	0.27	0.1	0.47	0.27	0.47			
Rk	1800	2200	3300	4700	8200	10,000	1500	2200	2700	3900	6800	8200			
lb	1.05	0.97	0.57	0,50	0.24	0.22	2.79	2.4	1.49	1.31	0.61	0.58			
Ec	-1.89	-2.13	-1.90	-2.35	-1.93	-2.19	-4.18	-5.28	-4.03	-5.11	-4.15	-4.74			
Eb	50.6	54.4	43.0	50.0	36.5	40.9	119	137	101	119	85	94			
Esix	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.0			
Eout	6.6	7.1	6.8	7.4	7.3	7.4	14.8	15.0	15.2	16.2	15.9	16.2			
Gain	13.2	14.2	13.6	14.8	14.6	14.8	14.8	15.0	15.2	16.2	15.9	16.2			
% Distortion	1.9	1.8	2.4	2.0	2.0	1.7	1.4	1.4	1.8	1.3	1.6	1.3			
Esig (1)	0.95	1.13	0.95	1.3	0.95	1.20	2.70	3.50	2.55	3.30	2.64	3.05			
Eout	12.5	15.5	12.9	19.2	13.7	17.7	39.9	52.5	38.4	53.0	42.0	49.4			
Gain	13.1	13.9	13.6	14.7	14.4	14.7	14.7	15.0	15.0	16.1	15.9	16.2			
% Distortion	3.9	4.2	4.9	4.7	4.4	4.5	4.1	4.9	4.9	4.6	4.7	4.5			

Note (1) For self bias operation this is taken at the grid current point with less than 1/4 microampere grid current.

FOR CIRCUIT SEE FIGURE 4

46

SYLVANIA RADIO TUBES

Zero Bias Operation

Self Bias Operation

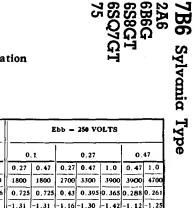
			Ebb •	- 108 V	OLTS				1	666	250 V C	OLTS				Ebb - 180 VOLTS								Ebb = 250 VOLTS							
Rb		.1		0.27		•.	47		.1		•.27		e .	47	Rb	0	.1		0.27			.47	•	.1		0.27		0.	.47		
Ref	0.27	0.47	0.27	0.47	1.0	0,47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0	Rcf	0.2	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0,47	11.		
Rk			•••												Rk	3900	3900	5600	5600	6800	8200	10,000	1500	800	2700	2700	2700	3900	47		
Ib	0.223	0.223	0.126	0.126	0.126	0.89	0.89	1.1	1.1	0,54	0.54	0.54	0.34	0.34	Ib	0.22	0.22	0.14	0.144	0.13	0.10	0.091	0.84	0.76	0.443	0.443	0.443	0.295	ś ò.		
Ec						••••									Ec	-0.80	0.86	-0.81	-0.81	-0.88	-0.82	-0.91	-1.26	-1.37	-1.19	-1.19	-1.19	-1.15	-1.		
ЕЬ	77.7	77.7	66.0	66.0	66.0	58.2	58.2	140	140	104	104	104	90	90	Eb	78	78	61.1	61.1	64.9	53	57.2	166	174	13,1	131	131	111.5	12		
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.		
Eout	3,85	4,15	4.32	4.9	5.45	5.0	5.8	6.0	6.3	7.0	7.5	8.2	7.7	8.5	Eout	4.25	4.3	4.8	5.35	5.62	5.4	6.4	5.65	5.8	6.5	7.15	7.65	7.3	7.0		
Gain	38.5	41.5	43.2	49.0	54.5	50.O	58.0	60.0	63.0	70.0	75.0	82,0	77.0	85.0	Gain	42.5	43.0	48.0	53.5	56.2	54.0	64.0	56.5	58.0	65.0	71.5	76.5	73.0	76.		
% Dist.	4.6	4.3	5.0	4.2	3.3	4.5	3.4	0.8	0.8	1.1	1.0	0.9	1.3	1.1	% Dist.	4.1	4.1	4.3	3.7	3.2	4.1	3.6	0.9	0.9	1.0	1.0	1.0	1.3	1.2		
Esig (1)	0.1	0.11	0.1	0.11	0.14	0.1	0.14	0.46	0.46	0.35	0.40	0.48	0.36	0.45	Esig (1)	0.12	0,12	0.1	0,1	0.13	0.1	0.15	0.47	0.54	0.39	0.39	0.39	0.33	0.4		
Eout	3.85	4.55	4.32	5.35	7.4	5.0	7.84	25.3	26.0	22.5	28.0	35.3	25.1	34.2	Eout	5.1	5.15	4.8	5.35	7.25	5.4	9.0	26.5	30.5	24.5	27.5	29.2	23,5	34.0		
Gain	38.5	41.4	43.2	48.6	53.0	50.0	56.0	55.0	56.5	64.4	70.0	74.0	70.0	76.0	Gain	42.5	43.0	48	53.5	55.8	54.0	60.0	56.4	56.5	63.0	70.5	75.0	71.3	75.5		
% Dist.	4.6	4.9	5.0	4.7	5.0	4.5	5.0	4.8	4.7	4.9	4.8	4.8	5.0	4.8	% Dist.	5.1	5.0	4.3	3.7	4.6	4.1	5.0	4.5	5.3	5.1	4.2	3.9	5.2	5.3		

Note (1) Maximum signal for 5% Distortion.

FOR CIRCUIT SEE FIGURE 5

Note (1) For self bias operation this is taken at the grid current point with less than $\frac{1}{2}$ microampere grid current.

FOR CIRCUIT SEE FIGURE 4


ania Υp

S 6F

~ **LVANI** ≻ ᅍ σ 0 C σ m S

4

S

5 114.5 124.5 0.1 0.1 3 6.24 6.75

0.8 0.7

25.0 36.0

0.40 0.5

62.4 67.5

62.4 67.5

RESISTANCE COUPLED AMPLIFIER DATA

Zero Bias Operation

Self Bias Operation

			Ebb =	100 VOL	TS					Ebb =	250	VOLTS	6			1		ЕРР •	- 100 \	Ebb - 250 VOLTS							
Rb	0.	1		0.27		0.	47	0.	1		0.27	-	0.	47	Rb	0	.1		0.27		0	47	0	.1,		0.27	
Rcf	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0	Ref	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0
Rk			· · · •		<u></u>										Rk	3900	3900	5600	6800	6800	8200	10,000	1800	1800	2700	3300	3900
Ib	0.228	0.228	0.132	0.132	0.132	0.09	0.09	1.0	1.0	0.52	0.52	0.52	0.34	0.34	Ib	0.214	0.214	0.138	0.126	0.126	0.095	0.086	0.725	0.725	0.43	0.395	0.365
Ec															Ec	-0.835	-0.835	-0.774	-0.857	-0.857	-0.78	-0.86	-1.31	-1.31	-1.16	-1.30	-1.42
Eb	77.2	77.2	64.4	64.4	64.4	57.7	57.7	150	150	110	110	110	90	90	Eb	78.6	78.6	62.8	66.0	66.0	55.3	59.6	177.5	177.5	134	143.5	151.5
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0,1	0.1	0.1	0.1	0.1	Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	3.3	3.55	3.95	4.48	5.05	4.63	5.4	4.63	5.0	5.6	6.1	6.7	6.43	7.15	Eout	3.3	3.5	4.1	4.5	5.0	4.9	5.2	4.37	4.78	5.50	5.92	6.13
Gain	33.0	35.5	39.5	44.8	50.5	46.3	\$4.0	46.3	50.0	56.0	61.0	67.0	64.3	71.5	Gain	33.0	35.0	41.0	45.0	50.0	49.0	52.0	43.7	47.8	55.0	59.2	61.3
% Dist.	3.0	2.9	3.8	3.2	2.6	36	2.6	0.8	0.7	.0.9	0.8	0.7	0.8	0.7	% Dist.	2.7	2.6	3.2	3.0	2.5	3.1	2.6	0.8	0.7	0.8	0.8	0.7
Esig (1)	0.15	0.16	0.12	0.14	0.17	0.13	0.17	0.55	0.6	0.5	0.57	0.65	0.5	0.6	Esig (1)	0.16	0.16	0.10	0.17	0.17	0.12	0.19	0.55	0.55	0.40	0.53	0.61
Eout	4.73	5.4	4.65	6.12	8.3	5.9	8.8	23.4	26.6	25.5	31.8	39.0	29.5	39.5	Eout	5.15	5.5	4.1	7.3	8.2	5.75	9.7	23.9	26.0	21.8	31.2	37.0
Gain	31.5	33.8	38.7	43.8	49.0	45.4	51.7	42.5	44.5	51.0	56.0	60.0	59.0	66.0	Gain	32.2	34.4	41.0	43.0	48.1	48.0	51.0	43.5	47.4	54.5	59.0	60.6
% Dist.	4.9	5.0	4.9	4.8	5.0	5.0	5.0	4.7	4.9	5.0	4.9	4.9	5.0	5.0	% Dist.	4.5	4.0	3.2	5.0	4.5	4.0	5.0	4.5	4.0	3.3	4.0	4.5

Note (1) Maximum Signal for 5.0% Distortion

FOR CIRCUIT SEE FIGURE 5

Note (1) For self bias operation this is taken at the grid current point with less than $\frac{1}{2}$ Microampere grid current.

FOR CIRCUIT SEE FIGURE 4

1 .

Zero Bias Operation

Self Bias Operation

			Ebb =	100 VOI	LTS			Ebb = 250 VOLTS										Ebb	= 100		Ebb = 250 VOLTS								
Rb	0.	1		0.27		0.	47	1	.0	}	0.27		0.	47	Rb	0	.1		0.27		0,4	7	0	.1		0.27		0	. 47
Rcí	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0	Ref	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	11.0
Rk															Rk	4700	4700	6800	6800	6800	10,000	10,000	1800	1800	27 0 0	3300	3900	3900	47
Ib	0.174	0.174	0.108	0.108	0.108	0.078	0.078	0.84	0.84	0.47	0.47	0.47	0.32	0.32	Jb	0.156	0.156	0.104	0.104	0.104	0.073	Q.073	0.60	0.60	0.38	0.34	0.32	0.258	0.
Ec															Ec	-0.734	-0,734	-0.707	-0.707	-0.707	-0.73	-0.73	-1.08	-1.08	-1.03	-1.12	-1.25	-1.01	-1.
Eb	82.6	82.6	70.8	70.8	70.8	63.4	63.4	166	166	123	123	123	100	100	Eb	84.4	84.4	71.9	71.9	71.9	65.7	65.7	190	190	147	158	163.5	129	13
Esig	0.1	0,1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.
Eout	2.75	3.02	3.67	4.25	4.77	4.68	5.37	3,95	4.32	5.2	5.8	6.25	6.0	6.75	Eout	2.64	2.9	3.51	4.13	4.65	4.35	5.15	3.7	4.05	5.1	5.35	5.85	5.9	6.
Gain	27.5	30.2	36.7	42.5	47.7	46.8	53.7	39.5	43.2	52.0	58.0	62.5	60.0	67.5	Gain	26.4	29.0	35.1	41.3	46.5	43.5	51.5	37.0	40.5	51.0	53.5	\$8.5	59.0	65
% Dist.	3.3	3.1	4.3	3.5	2.9	3.9	2.9	0.6	0.5	0.7	0.6	0.5	0.6	0.5	% Dist.	3.4	3.3	3.4	3.0	2.6	3.7	1.9	1.0	0.9	1.0	0.9	0.5	0.9	0.
Esig (1)	0.14	0.15	0.12	0.14	0.15	0.12	0.15	0.55	0.55	0.5	0.53	0,6	0.48	0.58	Esig (1)	0.15	0.15	0.12	0.12	0.12	0.14	0.14	0.55	0.55	0.41	0.53	0.60	0.40	0.
Eout	3.7	4.45	4.22	5.5	6.9	5.35	7.7	19.8	21.9	23.6	27.9	34.0	27.4	37.0	Eout	3,95	4.3	4.16	4.9	5.35	6.0	7.15	19.8	22.0	19.4	28.0	34.0	22.8	32.
Gain	26.4	29.6	35.0	39.2	46.0	44.5	51.4	36.0	39.8	47.2	52.6	56.6	57.0	63.9	Gain	26.4	28.6	34.7	40.7	44.5	43.0	51.0	36.0	40.0	47.5	52.9	57.0	57.0	64
% Dist.	4.6	5.0	5.0	4.9	5.0	4.8	5.0	5.0	4.8	5.0	4.8	4.9	5.0	5.0	% Dist.	5.0	4.7	4.3	3.7	3.5	5.0	4.0	5.0	4.5	3.7	4.8	4.6	3.6	3

Note (1) Maximum Signal for 5% Distortion.

Note (1)For self bias operation this is taken at the grid current point with less than 1/2 Microampere grid current.

Sylvania

Түре

Ġ,

FOR CIRCUIT SEE FIGURE 5

S

7**C7** Sylvamia 6C6 6J7GT 6W7G 7AJ7 14C7 14C7 1273 1273 1273 1273 1280 954 57

Түре

RESISTANCE COUPLED AMPLIFIER DATA

Self Bias Operation

			Ebb	= 100 \	VOLTS			Ebb = 250 VOLTS								
Rb	0	.1		0,27		0	.47	0	.1		0.27		0.	47		
Rc2	e .	47		1.2		1	.8	0	47	ļ	1.2	2.2				
Rcf	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0		
Rk	1000	1000	2200	2200	2200	3900	3900	470	470	1000	1000	1000	1500	1500		
Ib	0.62	0.62	0.27	0.27	0.27	0.168	0.168	1.76	1.76	0.75	0.75	0.75	0.44	0.44		
Ic:	0.145	0.145	0.064	0.064	0.064	0.465	0.465	0.41	0.41	0.177	0.177	0.177	0.10	0.10		
Eci	-0.765	-0.765	-0.735	-0.735	-0.735	-0.622	-0.622	-1.02	-1.02	-0.927	-0.927	-0.927	-0.81	-0.81		
Ec:	31.9	31.9	23.3	23.3	23.3	16.3	16.3	57.2	57.2	37.5	37.5	37.5	30	30		
Eb	38	38	27.2	27.2	27.2	21	21	74	74	47.5	47.5	47.5	43.5	43.5		
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
Eout	7.0	8.05	8.0	10.0	12.0	9.8	12.5	10.6	12.0	13.0	17.0	20.4	18.8	24.5		
Gain	70.0	80.5	80	100	120	98	125	106	120	130	170	204	188	245		
% Distortion	2.7	2.4	3.7	2.7	2.3	3.2	1.9	1.6	1.4	1.5	1.6	2.4	2.0	2.8		
Esig (1)	0.18	0.18	0.14	0.14	0.14	0.14	0.14	0.4	0.4	0.27	0.27	0.27	0.18	0.18		
Eout	12.3	13.9	10.8	13.8	16.7	13.2	17.0	40.3	45.2	33.0	41.6	49.5	32	41.5		
Gain	68.5	77.2	77.2	98.7	119	94.5	121.5	101	113	122	154	183.5	178	230		
% Distortion	4.7	4.1	5.5	4.6	3.8	4.9	5.0	4.3	4.4	5.0	5.0	5.9	4.3	4.9		

' Note (1) For self bias operation this is taken at the grid current point with less than 1/2 microampere grid current.

FOR CIRCUIT SEE FIGURE 1

S YLVANI ≻ ᅍ ≻ σ Ô -C 8 m S

Self Bias Operation

		I	866 - 1	00 VOL'	rs			Eb	b = 25	0 VOLT	rs	
Rb	0.	047	6	. 1	0	. 27	0.	047	0	.1	0	. 27
Rcf	0.1.	0.27	0.1	0.47	0.27	0.47	0.1	0.27	0.1	0.47	0.27	0.47
Rk	1000	1200	1800	2200	4700	4700	560	680	820	1200	2700	2700
ІЪ	1.06	1.00	0.59	0.56	0.248	0.248	3.05	2.95	1.74	1.60	0.67	0.67
Ec	-1.06	-1.20	-1.06	-1.23	-1.17	-1.17	-1.71	-2.00	-1.43	-1.92	-1.81	-1.8
Eb	50.2	53	41	44	33	33	107	111.5	76	90	69	69
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	2.15	2.22	2.12	2.34	2.20	2.30	2.56	2.55	2.60	2.69	2.48	2.59
Gain	21.5	22.2	21.2	23.4	22.0	23.0	25.6	25.5	26.0	26.9	24.8	25.9
% Distortion	1.6	1.2	1.6	1.2	1.2	1.2	0.8	0.6	0.8	0.7	0.9	0.9
Esig (1)	0.29	0.39	0.20	0.40	0.39	0.39	0.82	1.00	0.64	0.96	0.78	0.78
Eout	6.25	8.65	4.25	9.30	8.55	8.95	21.0	25.5	16.6	25.8	19.3	20.2
Gain	21.5	22.2	21.2	23.2	21.9	23,0	25.6	25.5	26.0	26.9	24.8	25.9
% Distortion	4.3	4.9	3.0	4.4	4.8	4.0	5.0	5.0	4.7	4.9	5.0	4.8

Note (1) For self bias operation this is taken at the grid current point with less than 1/2 Microampere grid current.

FOR CIRCUIT SEE FIGURE 4

sΥ

<u>ر</u>م

Self Bias Operation

]	ЕЬЬ — 1	ee VOLT	rs			Eb	b - 25	VOL1	rs	
Rb	0.	647	-).1	0.	27	0	847		.1	•.	27
Rcf	0.1	0.27	0.1	0.47	0.27	0.47	0.1	0.27	0.1	0.47	0.27	0.47
Rk	1800	2200	2700	3900	6800	8200	1500	1800	2200	3300	5600	8200
Ib	1.07	1.0	0.62	0.56	0.256	0.240	2.85	2.69	1.63	1.46	0.661	0.60
Ec	-1.93	-2.2	-1.67	-2.18	-1.74	-1.97	-4.27	-4.84	-3.59	-4.82	-3.70	-4.92
Eb	49.6	53.0	38	44	31	35.2	116	123.8	87	104	71.8	88
Esig	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.0
Eout	5.3	5.4	5.6	5.8	5.7	5.8	11.2	11.8	11.8	12.4	12.1	12.2
Gain	10.6	10.8	11.2	11.6	11.4	11,.6	11.2	11.8	11.8	12.4	12.1	12.2
% Distortion	2.1	1.9	2.0	1.8	2.2	1.8	1.3	1.2	1.8	1.3	1.8	1.3
Esig (1)	1.02	1.24	0.87	1.23	0.97	1.10	2.80	3.25	2.23	3.27	2.40	3.32
Eout	10.6	13.2	9.5	14.2	11.0	12.8	31.2	38.0	26.0	40.4	28.5	40.6
Gain	10.4	10.6	10.9	11.5	11.3	11.6	11.1	11.7	11.7	12.3	12.1	12.2
% Distortion	4.5	4.9	4.7	4.8	4.9	4.3	4.5	4.6	4.4	4.5	4.5	4.9

Note (1) For self bias operation this is taken at the grid current point with less than 1/2 microampere grid current

FOR CIRCUIT SEE FIGURE 4

Rh

Ref

Rk

IЪ

Ec

Eb

Esig

Eout

Gain

% Dist.

Esig (1)

Eout

Gain

% Dist.

Self Bias Operation-All Values Per Single Section

Zero Bias Operation-All Values Per Single Section

6 47

0.47 1.0

. . .

0.13

38.6

49.5

0.9

46.0

0.25 0.32

0.1

0.27 0.47

. . .

1.36 1.36 0.64

.

114 114

0.1 0.1 0.1 0,1

4.1

41.0 43.2 47.0

0.4

1.0

37.0

37.0

4.9 5.0 1 5.0

Ebb = 259 VOLTS

0.27

0.27

77.0

. 86

37.3 45.4

4.32 4.7 5.1

0.4 0.5 0.4 0.4

1.07

41.5

38.8 43.4 46.8 0.47

62.0

0,1

57.5

5.25 5.75

0.4

0.47 1.0 0.47 1.0

0.64 0.64 0.40 0.40

0.1 0.1

77.0 77.0 62.0

5.5

51.0 56.0 52.5

53.6 40.0

Ũ

С

.97 1.09

5.0

Ebb = 100 VOLTS

0.27

0.47

. . .

45.5 45.5 38.6

1.0

.

4.7

0.202 0.13

5.1 4.95

51.0

1.0

41.6

			Epp -	- 100 \	OLTS			l	1	Ebb =	250 V	OLTS	8	
Rb	0.	10		0.27		0,	67	•.			0.27			.47
Rcí	0.27	0.47	0.27	0.47	1.0	4.7	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0
Rk	3300	3300	5600	5600	6800	6800	8200	1800	2200	3300	3900	3900	4700	5600
Ib	0.30	0.30	0.169	0.169	0.152	0,1240	0.112	0.917	0.83	0.475	0.44	0.44	0.312	0.29
Ec	-0.99	-0.99	-0.948	-0.948	-1.03	-0.844	±0.92	-1.65	-1.83	-1.57	-1.72	-1.72	-1.47	-1.62
Eb	70	70	54.3	54.3	59.9	41.7	47.3	158.3	167	122	131	131	103	113.5
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	3.2	3.23	3.7	4.15	4.5	4.28	4.65	4.0	4.1	4.5	5.0	5.25	5.25	5.55
Gain	32.0	32.3	37.0	41.5	45.0	42.8	46.5	40.0	41.0	45.0	50.0	52.5	52.5	55.5
% Dist.	1.3	1.3	1.8	1.5	1.4	1.8	1.4	0.6	0.5	0.6	0.5	0.4	0.5	0,4
Esig (1)	0.33	0.33	0.21	0.21	0.34	0.2	0.3	0.87	1.03	0.83	0.97	0.97	0.77	0.90
Eout	10.3	10.4	7.7	8.6	14.8	8.5	13.5	33.6	41.5	36.3	46.6	48.8	38.8	48.5
Gain	31.2	31.5	36.6	41.0	43.5	42.5	45.0	38.6	40.2	43.7	48.0	50.4	50.4	54.0
% Dist.	4.9	4.8	4.0	3.1	5.0	3.4	4.4	4.0	4.8	4.5	4.8	3.8	3.9	3.7

Note (1) For self bias operation this is taken at the grid current point with less than	14 Microampere grid
current.	

FOR CIRCUIT SEE FIGURE 4

Note (1) Maximum signal for 5.0% Distortion.

0.1

60.0

3.6 3.95 4.35

1.0 1.1 1.0 1.0

0.47 0.27

45.5

9.25 111.8 14.7 10.4 14.7

0.27

0.40 0.40 0.202 0.202

60.0

0.1 0.1 0.1 0.1 0.1 0.1 0. t

3.4

34.0 36.0 39.5 43.5 47.0

1.1

0.33 0.34 0.25 0.3 0.34

10.3 11.2

31.2 33.0 37.0 39.4 43.4

5.0 4.8 4.9 5.0 5.0 5.0 5.0

FOR CIRCUIT SEE FIGURE 5

Sylv 1.03 ramia 4.8 5.0 5.0

53

S ~ -<

⋗ z

≽

70

Ъ

σ

0

-

C

σ

m

S

Self Bias-Single Section

i		1	Ebb == 1	00 VOL	rs			Eb	b = 250	VOLT	s	
Rb	θ.	047	1 0).1	0	. 27	0.	047	0	. 1	0.	27
Rcf	0.1	0.27	0.1	0.47	0.27	0.47	0.1	0.27	0.1	0.47	0.27	0.47
Rk	1000	1200	1800	2200	4700	4700	390	470	820	1000	2200	2200
Ib	0.90	0.84	0.51	0.48	0.22	0.22	3.0	2.86	1.58	1.50	0.66	0.66
Ec	-0.90	-1.01	-0.92	-1.05	-1.03	-1.03	-1.17	-1.34	-1.29	-1.50	-1.45	-1.45
Eb	57.7	60.5	49	52	40.5	40.5	109	115	92	100	72	72
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	2.65	2.65	2.65	3.0	2.85	3.0	3.38	3.82	3.56	3.65	3.40	3.60
Gain	26.5	26.5	26.5	30.0	28.5	30.0	33.8	38.2	35.6	36.5	34.0	36.0
% Distortion	2.1	1.8	2.3	1.6	1.7	1.5	1.1	0.9	1.0	0.7	0.8	0.7
Esig (1)	0.18	0.26	0.17	0.30	0.24	0.24	0.4	.0.55	0.50	0.70	0.60	0.60
Eout	4.74	6.8	4.45	8.8	6.7	7.1	13.5	21.0	17.8	25.5	20.4	21.6
Gain	26.3	26.2	26.2	29.4	28.0	29.6	33.8	38.2	35.6	36.4	34.0	36.0
% Distortion	3.7	4.8	3.6	4.7	4.3	3.7	4.0	4.6	4.6	4.9	4.5	4.2

Note (1). For self bias operation this is taken at the grid current point with less than 1/5 microampere grid current.

FOR CIRCUIT SEE FIGURE 4

54 4

SYLVANIA RADIO TUBES

Self Bias Operation

	ll.		Ерр -	= 100 V	OLTS			ļ		Ebb	== 250	VOLTS	Ú	
Rb		.1		0 27			.47		.1		0.27			. 47
Rcs	0.	39	}	1.0		1	.8	•	. 39		1.0			1.8
Ref	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0
Rk	.1200	1200	2700	2700	2700	4700	4700	470	470	1000	1000	1200	1800	1800
Ib	0.61	0.61	0.271	0.271	0.271	0.163	0.163	1.75	1.75	0.75	0.75	0.74	0.44	0.44
Icı	0.173	0.173	0.076	0.076	0.076	0.044	0.044	0.49	0.49	0.212	0.212	0.207	0.121	0.12
Ec1	-0.94	-0.94	-0.938	-0.938	-0.938	-0.974	-0.974	-1.05	-1.05	-0.962	-0.962	-1.14	-1.01	-1.01
Ec:	32.5	32.5	23.5	23.5	23.5	20.5	20.5	59	59	38	38	43	32.1	32.1
ЕЬ	39	39	26.9	26.9	26.9	23.4	23.4	75	75	47.5	47.5	50	43	43
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	7.8	8.9	8.0	10.2	12.2	9.6	12.5	13.6	15.5	15.4	19.8	22.0	19.5	25.5
Gain	78	89	80	102	122	96	125	136 ·	155	154	198	220	195	255
% Distortion	4.6	4.3	5.0	3.8	3.0	5.2	3.9	2.2	2.1	2.8	2.1	2.0	3.0	3.1
Esig (1)	0.11	0.11	0.1	0.1	0.1	0.1	0.1	0.22	0.22	0.15	0.15	0.2	0.14	0.14
Eout	8.55	9.8	8.0	10.2	12.2	9.6	12.5	29	33	22.5	28.0	41.5	26.4	34.5
Gain	77.8	89	80	102	122	96	129	132	150	150	187	207.5	189	246.5
% Distortion	5.1	4.6	5.0	3.8	3.0	5.2	3.9	4.8	4.3	4.5	3.8	5.0	4.7	4.4

Note (1). For self bias operation this is taken at the grid current point with less than 3/ microampere grid current.

FOR CIRCUIT SEE FIGURE 1

(For

7N7 Data See

Туре

Sylvania

T

	Constr				F	Emitter		Plate	Screen	Neg.	Plate Cur-	Screen Cur-	Plate ①	Amp. ③	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Type	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
01A .	ST-14	4D	Triode	Det. Amp.	Fil.	5.0	0.25	90 135		4.5	$2.5 \\ 3.0$		11,000 10,000	8.0 8.0		
0A2	Min.	5BO	Diode	Voltage Reg.	Cold K			Starti	ng Volta	ge = 15	5, Oper	ating Vo	ltage = 150, 0	Operating	Current=5 to	30 Ma.
0B2	Min.	5BO	Diode	Voltage Reg.	Cold K			Starti	ng Volta	ge = 11	5, Oper	ating Vo	ltage = 105,	Operating	Current=5 to	30 Ma.
0Y4	Metal	4BU	Gas Diode	H-W Rect.	Cold K			117 A	.C. Volt	s Per P	late, R	MS, 75	Ma. Max., 4	0 Ma. Mi	n. Output Cu	rent
0Z3		5N	Gas Rect.	F.W. Rect.	Cold K			350	V. RMS	Per Pl	ate, 75	Ma. Ma	x. DC Outp	ut.		0Z4
0Z4A	T-7	4R	Gas Duodiode	F.W. Rect.	Ionic			300 A	.C. Volt	s Per F	late, R	MS, 110	Ma. Max.,	30 Ma. N	fin. Output C	irrent
1, KR1	ST-12	4G	Diode	H.W. Rect.	Cath.	6.3	0.30	350	V. RMS	Plate,	50 Ma.	DC Ou	tput.	14		1V
1A3	Min.	5AP	Diode	Det.	Cath.	1.4	0.15	Single	Diode,	Catho	de Type	for H.I	. Use.			
1 A4	ST-12	4K	Tetrode	R.F. Amp.	Fil.	2.0	0.06	90 180	67.5 67.5	3.0	$2.2 \\ 2.3$	0.9	600,000 1.0 Meg.	720 750		1A4P, 1A4T
1A4P	ST-12	4M	Pentode	R.F. Amp.	Fil.	$2.0 \\ 2.0$	0.06	135 180	67.5 67.5	3.0 3.0	$2.2 \\ 2.3$	0.9	1 Meg. 1 Meg.	625 725		
1A4T	ST-12	4 K	Tetrode	R.F. Amp.	Fil.	2.0	0.06	135 180	67.5 67.5	3.0 3.0	$2.2 \\ 2.2$	0.7	350,000 600,000	625 650		
1A6	ST-12	6L	Heptode	Converter	Fil.	2.0 2.0	0.06	135 180	67.5 67.5	3.0 3.0	1.8 1.5	2.1 2.0	400,000 500,000	[G ₂ =135 V. at 2.0 Ma. ^a G ₂ =180 V. at 2.5 Ma. ^a	
1AB5	Lock-In	5BF	Pentode	R.F. Amp.	Fil.	$1.2 \\ 1.2$	0.130.13	90 150	90 150	0 1.5	3.5 6.8	0.8	275,000 120,000	1,100 1,350		
1 B4	ST-12	4 K	Tetrode	R.F. Amp.	Fil.	2.0	0.06	90 180	67.5 67.5	3.0 3.0	1.6 1.7	0.7	1.0 Meg.◆ 1.5 Meg.◆			1B4P 1B4T
1B4/951	ST-12	4K	Tetrode	R.F. Amp.	Fil.	2.0	0.06	Same	as Typ	e 1B4.		•	•	·	•	1B4 P or T
1B4P	ST-12	4M	Pentode	R.F. Amp.	Fil.	$2.0 \\ 2.0$	0.06	135 180	67.5 67.5	3.0 3.0	$1.6 \\ 1.7$	0.7	1.5 Meg. 1.5 Meg.	560 650		

Load Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

◆Approximate. ▲Plate to Plate. ■Through 20,000 Ohms.

*Per Tube or Section—No Signal. §Plate and Target Supply.

8

56

S

Y LVA N I ≻ $\boldsymbol{\mathcal{R}}$ ≻ D 0 -C 8 m Ś

Self Bias Operation

	l.		Ebb :	= 100 V	OLTS			Į.		Ebb	- 250	VOLTS		
Rb		.1		0 27		•	47		.1		6.27			. 47
Rc:	•	39]	1.0		1	.8		. 39]	1.0		1	1.8
Ref	0.27	0.47	0.27	0.47	1.0	0.47	1.0	0.27	0.47	0.27	0.47	1.0	0.47	1.0
Rk	.1200	1200	2700	2700	2700	4700	4700	470	470	1000	1000	1200	1800	1800
Ib	0.61	0.61	0.271	0.271	0.271	0.163	0.163	1.75	1.75	0.75	0.75	0.74	0.44	0,44
Icı	0.173	0.173	0.076	0.076	0.076	0.044	0.044	0.49	0.49	0.212	0.212	0.207	0.121	0.12
Ec1	-0.94	-0.94	-0.938	-0.938	-0.938	-0.974	-0.974	-1.05	-1.05	-0.962	-0.962	-1.14	-1.01	-1.01
Ec:	32.5	32.5	23.5	23.5	23.5	20.5	20.5	59	59	38	38	43	32.1	32.1
Eb	39	39	26.9	26.9	26.9	23.4	23.4	75	75	47.5	47.5	50	43	43
Esig	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Eout	7.8	8.9	8.0	10.2	12.2	9.6	12.5	13.6	15.5	15.4	19.8	22.0	19.5	25.5
Gain	78	89	80	102	122	96	125	136 ·	155	154	198	220	195	255
% Distortion	4.6	4.3	5.0	3.8	3.0	5.2	3.9	2.2	2.1	2.8	2.1	2.0	3.0	3.1
Esig (1)	0.11	0.11	0.1	0.1	0.1	0.1	0.1	0.22	0.22	0.15	0.15	0.2	0.14	0.14
Eout	8.55	9.8	8.0	10.2	12.2	9.6	12.5	29	33	22.5	28.0	41.5	26.4	34.5
Gain	77.8	89	80	102	122	96	129	132	150	150	187	207.5	189	246.5
% Distortion	5.1	4.6	5.0	3.8	3.0	5.2	3.9	4.8	4.3	4.5	3.8	5.0	4.7	4.4

Note (1). For self bias operation this is taken at the grid current point with less than 3/2 microampere grid current.

FOR CIRCUIT SEE FIGURE 1

(For

7N7 Data

See

Type

ania

	Constr				E	Emitter			Screen		Plate Cur-	Screen Cur-	_Plate ①	Amp. ③		Suggested
Туре	Style	Base Diag.	Class	Use	Type	Volta	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
01A .	ST-14	4D	Triode	Det. Amp.	Fil.	5.0	0.25	90 135		4.5 9.0	$2.5 \\ 3.0$		11,000 10,000	8.0 8.0		
0A2	Min.	5BO	Diode	Voltage Reg.	Cold K			Starti	ng Volta	ge = 15	5, Oper	ating Vo	ltage=150,	Operating	Current=5 to	30 Ma.
0B2	Min.	5BO	Diode	Voltage Reg.	Cold K	1		Starti	ng Volts	ge=11	5, Oper	ating Vo	ltage=105,	Operating	Current=5 to	30 Ma.
0Y4	Metal	4BU	Gas Diode	H-W Rect.	Cold K	1		117 A	.C. Volt	s Per F	late, R	MS, 75 1	Ma. Max., 4	0 Ma. Mi	n. Output Cu	rrent
0Z3		5N	Gas Rect.	F.W. Rect.	Cold K			350	V. RMS	Per Pl	ate, 75	Ma. Ma	x. DC Outp	ut.		0Z4
0Z4A	T-7	4R	Gas Duodiode	F.W. Rect.	Ionie			300 A	.C. Volt	s Per F	Plate, R	MS, 110	Ma. Max.,	30 Ma. N	lin. Output Co	urrent
1, KR1	ST-12	4G	Diode	H.W. Rect.	Cath.	6.3	0.30	350	V. RMS	Plate,	50 Ma.	DC Out	tput.			1V
1A3	Min.	5AP	Diode	Det.	Cath.	1.4	0.15	Single	Diode,	Catho	de Type	for H.F	. Use.			
1A4	ST-12	4K	Tetrode	R.F. Amp.	Fil.	2.0	0.06	90 180	67.5 67.5	3.0 3.0	2.2 2.3	0.9	600,000 1.0 Meg.	720 750		1A4P, 1A4T
1A4P	ST-12	4 M	Pentode	R.F. Amp.	Fil.	$2.0 \\ 2.0$	0.06	135 180	67.5 67.5	$3.0 \\ 3.0$	$2.2 \\ 2.3$	0.9 0.8	1 Meg. 1 Meg.	625 725		
1A4T	ST-12	4K	Tetrode	R.F. Amp.	Fil.	2.0	0.06	135 180	67.5 67.5	3.0 3.0	2.2 2.2	0.7 0.7	350,000 600,000	625 650		
1A6	ST-12	6L	Heptode	Converter	Fil.	2.0 2.0	0.06 0.06	135 180	67.5 67.5	3.0 3.0	1.8 1.5	2.1 2.0	400,000 500,000	9	$G_2 = 135 V.$ at 2.0 Ma. ^a $G_2 = 180 V.$ at 2.5 Ma. ^a	
1AB5	Lock-In	5BF	Pentode	R.F. Amp.	Fil.	$1.2 \\ 1.2$	0.13	90 150	90 150	$0 \\ 1.5$	3.5 6.8	0.8	275,000 120,000	1,100 1,350		
1B4	ST-12	4K	Tetrode	R.F. Amp.	Fil.	2.0	0.06	90 180	67.5 67.5	3.0 3.0	$1.6 \\ 1.7$	0.7 0.6	1.0 Meg.◆ 1.5 Meg.◆	600 650		1B4P 1B4T
1B4/951	ST-12	4K	Tetrode	R.F. Amp.	Fil.	2.0	0.06	Same	as Typ	e 1B4.	•		•	•	•	1B4 P or T
1B4P	ST-12	4 M	Pentode	R.F. Amp.	Fil.	$2.0 \\ 2.0$	0.06	135 180	67.5 67.5	3.0 3.0	1.6 1.7	0.7 0.6	1.5 Meg. 1.5 Meg.	560 650		

Load Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

◆Approximate. ♦Plate to Plate. ■Through 20,000 Ohms.

*Per Tube or Section-No Signal. §Plate and Target Supply.

.

S ~ ≻ ᅍ ≻ 0 0 -C σ m S

	Constr	uction				Emitter		Plate	Screen	Neg.	Plate Cur-	Screen Cur-	Plate ①	Amp. ()	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Туре	Volta	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
1B5/25S	ST-12	6M	Duodi Tri.	Det. Amp.	Fil.	2.0	0.06	135		3.0	0.8		35,000	20		
1B7GT	GT	7Z	Heptode	Conv.	Fil.	1.4	0.10	90	45	0	1.5	1.3	350,000	350♥	G ₂ =90 V. at 1.6 Ma.	1A7GT
1C6	ST-12	6L	Heptode	Converter	Fil.	2.0 2.0	0.12 0.12	135 180	67.5 67.5	3.0 3.0	1.3 1.5	2.5 - 2.0	600,000 700,000		G ₂ =135 V. at 3.1 Ma. G ₂ =180 V. at 4.0 Ma.	
1C7G	ST-12	7Z	Heptode	Converter	Fil.	2.0	0.12		as 1C6.							
1D5G	ST-12	5R	Tetrode	R.F. Amp.	Fil.	2.0	0.06	180	67.5	3.0	2.3	0.7	600,000	750		1D5GP, 1D5G7
1D5GP	ST-12	5Y	Pentode	R.F. Amp.	Fil.	2.0 2.0	0.06	135 180	67.5 67.5	3.0 3.0	$2.2 \\ 2.3$	0.9 0.8	1 Meg. 1 Meg.	625 725		
1D5GT	ST-12	5R	Tetrode	R.F. Amp.	Fil.	2.0 2.0	0.06	135 180	67.5 67.5	$3.0 \\ 3.0$	$2.2 \\ 2.2$	0.7 0.7	350,000 600,000	625 650		
1D7G	8T-12	72	Heptode	Converter	Fil.	2.0 2.0	0.06 0.06	135 180	67.5 67.5	3.0 3.0	1.8 1.5	2.1 2.0	400,000 500,000	275♥ 300♥	G ₂ =135 V. at 2.0 Ma. G ₂ =180 V. at 2.5 Ma.	
1D8	T-9	8AJ	Diode Triode Pentode	Det. Amp. Pwr. Amp.	Fil.	1.4 	0.1	45 90 45 90	 45 90	0 0 4.5 9.0	 1.6 5.0	 0.3 1.0	77,000 43,500 20,000 12,000	25 25 650 925	 35 200	. *
1E4	T-9	58	Triode	Det. Amp.	Fil.	1.4	0.05	Same	Charact	eristics	as Typ	e 1LE3.				
1E5G	ST-12	5R	Tetrode	R.F. Amp.	Fil.	2.0	0.06	180	67.5	3.0	1.7	0.6		650		1E5GP, 1E5G7
1E5GP	ST-12	5Y	Pentode	R.F. Amp.	Fil.	2.0	0.06	135 180	67.5 67.5	3.0 3.0	1.6 1.7	0.7 0.6	1.5 Meg. 1.5 Meg.	560 650		
1E5GT	ST-12	5R	Tetrode	R.F. Amp.	Fil.	2.0	0.06	Same	as Type	1E5G						1E5GP
1E7GT	ST-12	8C	Pentode	Pwr. Amp. Push pull Max. Signal	Fil.	2.0 2.0 2.0	0.24 0.24 0.24	90 135 135	90 135 135	3.0 4.5 7.5	3.8 7.5 10.5◆	1.1 2.2 3.5♥	340,000 260,000 24,0004	1,150 1,425 	110 290 575	

Mutual Conductance for Tetrodes, Pentodes, Etc.
 Conversion Conductance.

Plate to Plate. Through 20,000 Ohms.

Plate and Target Supply.

58

S

OBSOLETE AND SELDOM ENCOUNTERED TYPES-Cont.

m	Constr	r				Emitter			Screen	Neg.	Plate Cur-	Screen Cur-	Plate ①	Amp. ()	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Туре	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
1F4	ST-14	5K	Pentode	Pwr. Amp.	Fil.	2.0 2.0	0.12 0.12	90 135	90 135	3.0 4.5	4.0 8.0	1.1 2.4	20,000 16,000	1, 400 1,700	110 310	
1F5G	ST-14	6X	Pentode	Pwr. Amp.	Fil.	2.0	0.12	Same	as 1F4.	•	-					
1F6	ST-12	6W	Duodi Pent.	R.F. Amp.	Fil.	2.0	0.06	180	67.5	1.5	2.2	0.7	1 Meg. •	650		
1F7G	ST-12	7AD	Duodi Pent.	R.F. Amp.	Fil.	2.0	0.06	Same	as 1F6.							
1F7GV	ST-12	7AF	Duodi Pent.	R.F. Amp.	Fil.	2.0	0.06	Same	as 1F70	exce	pt diode	s placed	one above t	the other.		
1G5G	ST-14	6X	Pentode	Pwr. Amp.	Fil.	$2.0 \\ 2.0 \\ 2.0 \\ 2.0$	0.12 0.12 0.12	90 124 135	90 124 135	6.0 11.0 13.5	8.7 10.7 9.7	3.0 4.3 3.6	8,500 8,000 9,000	1,500 1,500 1,550	250 600 550	
1H4G	ST-12	58	Triode	Amp.	Fil.	2.0 2.0 2.0	0.06 0.06 0.06	90 135 180	· · · ·	4.5 9.0 13.5	$2.5 \\ 3.0 \\ 3.1$	••••	11,000 10,300 10,300	9,3 9,3 9,3		
1H6G	ST-12	7AA	Duodi Tri.	Amp.	Fil.	2.0	0.06	135		3.0	0.8		35,000	20		
1J5G	ST-14	6X	Pentode	Pwr. Amp.	Fil.	2.0	0.12	135	135	16.5	7.0	1.8	13,500	1,000	450	
1J6G	ST-12	7AB	Duo Tri.	Pwr. Amp.	Fil.	2.0 2.0 2.0	0.24 0.24 0.24	135 135 135		0 3.0 6.0	24 26 30	••••	10,0004 10,0004 10,0004		2,200 2,000 1,600 ↓	
1N6G	T-9	7AM	Diode Pent.	Pwr. Amp.	Fil.	1.4	0.05	90	90	4.5	3.1	0.6	25,000	800	100	
1Q6	T-3	8CO	Diode Pent.	Det. Amp.	Fil.	$1.25 \\ 1.25$	0.04	$\begin{array}{c} 30\\67.5\end{array}$	30 67.5	0 0	$\begin{array}{c} 0.33 \\ 1.60 \end{array}$	0.09 0.40	500,000 400,000	330 600		
1R4	Lock-In	4AH	H.F. Diode	Detector	Cath.	1.4	0.15	117	V. RMS		1.0		Resonant 1	Frequency	1,500 Mc.	
18A6GT	GT	6BD	Pentode	R.F. Amp.	Fil.	1.4	0.05	45 67.5 90	45 67.5 67.5	0 0 0	$1.1 \\ 2.4 \\ 2.45$	0.3 0.7 0.68	700,000 600,000 800,000	750 950 970		1N5GT
1SB6GT	GT	6BE	Di. Pent.	Det. Amp.	Fil.	1.4	0.05	45 90	45 67.5	0 0	0.6 1.45	0.16 0.38	900,000 700,000	500 665	*	1LD5
1V	ST-12	4 G	Diode	H.W. Rect.	Cath.	6.3	0.30	350	V. RMS	Plate.	45 Ma.	DC Ou	tput.			76

Doad Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

Approximate.
Plate to Plate.
Through 20,000 Ohms.

#Per Tube or Section—No Signal. \$Plate and Target Supply.

-LVA N I ≻ 70 ≻ σ -0 -C 8 m

S

	Constru	uction			1	Emitter		Plate	Screen	Nor	Plate Cur-	Screen Cur-	Plate ①	Amp. 3	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Type	Volts	Amp.	Volts		Grid Volts	rent Ma.	rent Ma.	Resistance	Factor	Output Mw.	Replacement
							· · · ·	<u> </u>				1110.		<u> </u>		
2A3	ST-16	4D	Triode	Pwr. Amp.	Fil.	2.5	2.5	250 300		$ \begin{array}{r} 45.0 \\ 62.0 \end{array} $	60 40 p	er tube	2,500 3,000	4.2	3,500 15,000	2A3H
2A3H	ST-16	4D	Triode	Pwr. Amp.	Cath.	2.5	2.5	Same	аз Тур	e 2A3.						2A3
2A4G	ST-12	58	Gas Triode	Relay Tube	Fil.	2.5	2.5	Insta Avera	ntaneou age Anoc	s Forwarde Curr	ard or I ent=0.	nverse A 1 Amp. l	node Volts= Max., Avg. 1	=200, Peak hime=45 se	Anode Am	ps.=1.25, ting Time=2 set
2A5	ST-14	6B	Pentode	Pwr. Amp.	Cath.	2.5	1.75	250 285	250 285	$\begin{array}{c} 16.5 \\ 20.0 \end{array}$	34 38	$ \begin{array}{r} 6.5 \\ 7.0 \end{array} $	7,000 7,000		3,200 4,800	
2A6	ST-12	6Ğ	Duodi Tri.	Det. Amp.	Cath.	2.5	0.80	250		2.0	0.9		91,000	100		
2A7, 2A78	ST-12	7C	Heptode	Converter	Cath.	2.5	0.80	Same	Charac	teristic	s as Ty	bes 6A7	or 6A8G.			
2B7, 2B7S	ST-12	7D	Diode Pent.	Det. Amp.	Cath.	2.5	0.80	100 250	100 100	$3.0 \\ 3.0$	$\begin{array}{c} 5.8\\ 6.0\end{array}$	$1.7 \\ 1.5$	300,000 800,000	950 1,000		
2C4	T-51/2	5AS	Gas Triode	Control Tube	Fil.	2.5	0.65	350		50	5	Voltag	e Drop = 16	Volts		
2D21	T-51/2	7BN	Gas Tetrode	Relay Tube	Cath.	6.3	0.6	400	••••	5	Avera Avera	ge Catho ged over	de Current any 30 sec.	= 100 Ma. interval	Max.,	
2E5	T-9	6R	Elect. Ray	Indicator	Cath.	2.5	0.80	Same	Charac	teristic	s as Ty	pe 6E5.				
28/48	ST-12	5D	Duo Diode	Det.	Cath.	2.5	1.35	App	roximat	e 40 M	a. Per F	late, 50	Ma. DC Ou	tput.		
2V3G	ST-12	4Y	Diode	H.W. Rect.	Fil.	2.5	5.0	6000	V. RMS	Plate,	2 Ma.	DC Out	put.			2X2A
2W3GT	GT	4X	Diode	H.W. Rect.	Fil.	2.5	1.50	350	V. RMS	Plate,	55 Ma.	DC Ou	tput, Cond.	Filter Inpu	t	
2Z2/G84	ST-12	4B	Diode	H.W. Rect.	Fil.	2.5	1,50	350	V. RMS	Plate,	50 Ma.	DC Ou	tput.			
G2/28		5D	Duo Diode	Det.	Cath.	2.5	1.75									28/48
3A5	Min.	7BC	Duo. Tri.	Amp.	Fil.	$1.4 \\ 2.8$	0.22 0.11	90 135		$\substack{2.5\\20.0}$	3.7 30.0	Push-F	8,300 Pull Class C	15 R.F. Amp.	2,000	
3B5GT	GT	7AQ	Beam Amp.	Amp.	Fil.	1.4 2.8	0.10 0.05	45 67.5	45 67,5	4.5 7.0	4.4 6.7	0.3 0.5	8,000 5,000	1,400 1,500	70 180	
3B7	Lock-In	7BE	Duotriode	Osc. Amp.	Fil.	2.8	0.11	-135	Class AB ₂	0	22.0		16,0004	20	1,500	
4A6G	ST-12	8L	Duo Tri.	Pwr. Amp.	Fil.	1.4 2.0	0.22	180	Class C	0	25.0		wr. Amp. 28 P to P Load		5 mc., 1400) mw. at 125 mc.
	01-12	917	Duo III.	г wr. Ашр.	rn.	4.0	0.06			1.5	10.8	BAmp.		20	1,000	

Load Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 Conversion Conductance.

Approximate.
Plate to Plate
Through 20,000 Ohms.

Per Tube or Section—No Signal. \$Plate and Target Supply.

59

S

YLVANIA

찌 ≻ σ 0

C œ ш ŝ

	Constr				Е	mitter		Plate	Screen	Neg. Grid	Cur-	Screen Cur-		Amp. 🧿	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Туре	Volts	Amp.	Volts	Volts	Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
G4/48		5D	Duo. Di.	Det.	Cath.	2.5	1.0									2S/4S
5T4	Metal	5T	Duo Di.	F.W. Rect.	Fil.	5.0	2.0	450 V 550 V	. RMS . RMS	Per Pla Per Pla	ate, 225 ate, 225	Ma. DC Ma. DC	Output, Co Output, Ch	ond. Input loke Input	Filter. Filter.	5U4G
5X3	ST-14	4C	Duodiode	Rect.	Fil.	5.0	2.0	400 1275	AC V. 1 AC V. 1	Per Plat Per Plat	te, RMS te, RMS	5, 110 Ma 5, 30 Ma.	. Output C Output Cu	urrent. Ch rrent. Cho	oke or Cond. ke or Cond.	l. Input to Filter. Input to Filter.
KR5	ST-16	5B	Pentode	Pwr. Amp.	Fil.	6.3	0.30	135	135	9.0	14	2.5	9,500	1,900	700	6A4/LA
6A3	ST-16	4D	Triode	Pwr. Amp.	Fil.	$\begin{array}{c} 6.3 \\ 6.3 \end{array}$	1.00	$250 \\ 325$		45.0 68.0	60.0 40.0#	Fixed Bias	2,500 3,000 4	4.2	$3,200 \\ 15,000$	
						6.3	1.00	325			40.0*		5,0004	••••	10,000	
6A4/LA	ST-14	5B	Pentode	Pwr. Amp.	Fil.	6.3	0.30	100 180	100 180	$ \begin{array}{r} 6.5 \\ 12.0 \end{array} $		$1.6 \\ 3.9$	11,000 8,000	$1,200 \\ 2,200$	310 1,400	
6A6	ST-14	7 B	Duo. Tri.	Pwr. Amp.	Cath.	6.3	0.8	300		0		Per Plate	8,0004	Max. Signal	10,000	6N7G
				Driver Driver		6.3 6.3	0.8 0.8	250 294	· · · · ·	$5.0 \\ 6.0$	6.0 7.0		$11,300 \\ 11,000$	35 35		
6A7S	ST-12	7C	Heptode	Converter	Cath.	6.3	0.30		as Typ							6A7
6AB5/6N5	Т-9	6R	Electron Ray	Indicator	Cath.	6.3	0.15	135				0.25 Me Shadow.	g., Target (Current 2.0	0 Ma.,	
6AB6G	ST-12	7AU	Duo Tri.	Pwr. Amp.	Cath.	6.3	0.50	250	Inp. Tri.	0						
								250	Outp. Tri.		34 .0		8,000		3,500	6N6G
6AB7/1853	Metal	8N	Pentode	Amp.	Cath.	6.3	0.45	300	200	3.0	12.5	3.2	700,000	5,000		

① Load Resistance for Power Output Tubes.
 ② Mutual Conductance for Tetrodes, Pentodes, Etc.
 ▼ Conversion Conductance.

Approximate.
Plate to Plate.
Through 20,000 Ohms.

Per Tube or Section—No Signal. §Plate and Target Supply.

S ~ IVA NI ≻ æ ≻ σ 0 -σ m

S

]		. 1	Emitter		Plata	Sereen	Ner	Plate Cur-	Screen Cur-	Plate 🕕	Amp. ②	Power	Suggested
Style	Base Diag.	Class	Use	Type	Volts	Amp.			Grid Volts	rent Ma.	rent Ma.			Output Mw.	Replacemer Type
GT	6Q	Triode	Amp.	Cath.	6.3	0.30	250		2.0	0.9		66,000	100		
T-9	7AG	Electron Ray	Indicator	Cath.	$6.3 \\ 6.3$	$\begin{array}{c} 0.15 \\ 0.15 \end{array}$	100 § 150 §								
ST-14	8AY	Tri. Pent.	Tri. Amp. Pent. Amp.	Cath.	6.3 6.3	0.85 0.85	250 250	250	$\begin{array}{c} 25 \\ 16.5 \end{array}$	3.7 34.0	6.5	19,000♦ 7,000	$\begin{array}{c} 6 \\ 2,500 \end{array}$	3,200	*
GT	6Q	Triode	Amp.	Cath.	6.3	0.30	95		15.0	7.0		3,500	4.2		
ST-12	7AH	Duo Plate Tri.	Remote Cut-Off Sharp Cut-Off	Cath.		$0.15 \\ $	$250 \\ 250 \\ 250 \\ 250 \\ 250$	•••• ••••	$1.5 \\ 35.0 \\ 1.5 \\ 9.5$	$ \begin{array}{r} 6.5 \\ 0.01 \\ 4.5 \\ 0.01 \end{array} $	· · · · ·	25,000 35,000	25 33	 	
GT	7AX	Duo. Tri.	Amp.	Cath.	6.3	0.50	250 (Driv	er for F	13.5 .P.6AC	5.0 5GT=	250 V. 1		14 5GT Pla	Per Section	
ST-12	6Q	Triode	Amp.	Cath.	6.3	0.30	180		18.0	7.0		4,900	7.4		
T-9	7AG	Twin Elec. Ray	Indicator	Cath.	6.3	0.15	100 § 135 § 250 §	Ray C	ontrol	Volts=8	1• for 0°	Shadow, •	Zero Volta	s for 100° Sh	adow.
ST-16	6AP	Beam Amp.	Amp.	Cath.	6.3	0.90	350	250	18.0	54.0	2.5	4,200	5,200	10,800	6L6G
GT	8BE	Duotriode	Amp. (per unit)	Cath.	6.3 6.3	0.30	100 180		3.6 6.5	3.7 7.6	• • • •	10,300 8,400	16 16		
ST-16	6AM	Beam Amp.	Pwr. Amp.	Cath.	6.3	0.90	Same	as 6L60	3.			• • • • • • • • • • • • • • • • • • •			6L6G
Min,	7BJ	Quadruple Di.	Rectifier	Cath.	6.3	0.20	75 Vo	lts RM	S Per F	late, 8	Ma. D-C	Output Per	Plate.		
GT	8CK	Duodiode Tri.	Det. Amp.	Cath.	6.3	0.30	250		2.0	2.3		44,000	70		
ST-14	6AS	Duo Tri.	Pwr. Amp.	Cath.	6.3	0.80	300 300	Inp. Tri. Outp. Tri.	0	8.0 45.0	••••	 7,000	·····	• 4,000	
	GT T-9 ST-14 GT ST-12 GT ST-12 GT ST-12 GT ST-16 Min, GT	Style Diag. GT 6Q T-9 7AG ST-14 8AY GT 6Q ST-12 7AH GT 7AX ST-12 7AH GT 7AX ST-12 6Q T-9 7AG ST-16 6AP GT 8BE ST-16 6AM Min, 7BJ GT GT 8CK	StyleDiag.GT6QTriodeT-97AGElectron RayST-148AYTri. Pent.GT6QTriodeST-127AHDuo Plate Tri.GT7AKDuo. Tri.GT7AKDuo. Tri.ST-126QTriodeT-97AGTwin Elec. RayST-166APBeam Amp.GT8BEDuotriodeST-166AMBeam Amp.Min,7BJQuadruple Di.GT8CKDuodiode Tri.	Style Diag. GT 6Q Triode Amp. T-9 7AG Electron Ray Indicator ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. GT 6Q Triode Amp. ST-14 8AY Tri. Pent. Tri. Amp. GT 6Q Triode Amp. ST-12 7AH Duo Plate Tri. Remote Cut-Off GT 7AX Duo. Tri. Amp. ST-12 6Q Triode Amp. ST-12 6Q Triode Amp. GT 7AK Duo. Tri. Amp. ST-12 6Q Triode Amp. GT 8BE Duotriode Amp. GT 8BE Duotriode Amp. GT 8BE Duotriode Amp. GT 6AM Beam Amp. Pwr. Amp. Min, 7BJ Quadruple Di. Rectifier GT 8CK Duodiode Tri. Det. Amp.	Base Diag. Class Use GT 6Q Triode Amp. Cath. T-9 7AG Electron Ray Indicator Cath. ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. GT 6Q Triode Amp. Cath. GT 6Q Triode Amp. Cath. ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. GT 6Q Triode Amp. Cath. ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. ST-12 6Q Triode Amp. Cath. ST-16 6AP Beam Amp. Amp. Cath. GT 8BE Duotriode Amp. Cath. GT 8Beam Amp. <td></td> <td>Base Diag. Class Use Type Volts Amp. GT 6Q Triode Amp. Cath. 6.3 0.30 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 GT 6Q Triode Amp. Cath. 6.3 0.85 GT 6Q Triode Amp. Cath. 6.3 0.30 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.15 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.15 GT 7AG Triode Amp. Cath. 6.3 0.15 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.15 ST-12 6Q Triode Amp.</td> <td>Base Diag. Class Use Type Volts Amp. GT 6Q Triode Amp. Cath. 6.3 0.30 250 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 100g ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.15 250 GT 6Q Triode Amp. Cath. 6.3 0.15 250 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.15 250 GT 7AG Triode Amp.<td>Base Diag. Class Class Use Use Type Type Volts Amp. Volts Volts Volts GT 6Q Triode Amp. Cath. 6.3 0.30 250 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray C ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.15 250 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 </td><td>Base Diag. Class Diag. Use Type Type Volts Volts Amp. Volts Volts Gr Volts Volts Volts Cath. Volts GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray Control ST-14 8AY Tri. Pent. Tri. Amp. Cath. 6.3 0.85 250 25 GT 6Q Triode Amp. Cath. 6.3 0.85 250 25 GT 6Q Triode Amp. Cath. 6.3 0.15 250 15.0 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 13.5 GT 7AG Triode Amp.<td>Base Style Class Use Type Volts Amp. Volts Grid Volts Grid Mat. end Mat. GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 100§ Ray Control Volts=-7 ST-14 8AY Tri. Pent. Tri. Amp. Cath. 6.3 0.85 250 2.5 3.7 GT 6Q Triode Amp. Cath. 6.3 0.85 250 15.0 7.0 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 7.0 ST-12 7AH Duo. Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 0.01 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 </td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Base Diag. Class Use Type Volts Amp. Volts Grid Ma. rent Volts rent Ma. Resistance Ma. Ma. Ma. Ma. Mas. Mas. Mas. Ohms GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 66.000 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1508 Ray Control Volts=75 for 0° Shadow, = - 6.3 0.85 250 25 3.7 19.000* GT 6Q Triode Amp. Cath. 6.3 0.85 250 15.0 7.0 3.500 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.5 6.5 25.000 3.500 ST-12 7AK Duo. Tri. Amp. Cath. 6.3 0.15 250</td><td>Base Diag. Class Use Type Type Volts Amp. Volts Volts Volts Volts Ma. Volts Ma. Ma. Ma. Ma. Resistance Ohms Factor Ohms GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 66,000 100 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray Control Volts=45 for 0° Shadow,= -23 Volts 6.3 0.15 1508 Ray Control Volts=75 for 0° Shadow,= -20 Volts 9.000 6 ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 250 25 3.7 15.0 7.0 3,500 4.2 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 7.0 3,500 3.3 GT 7AX Duo. Tri. Amp. Cath. 6.3 <td< td=""><td>Base Class Use Type Voits Amp. Voits Voits Voits Voits Voits Ma. Ma.</td></td<></td></td></td>		Base Diag. Class Use Type Volts Amp. GT 6Q Triode Amp. Cath. 6.3 0.30 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 GT 6Q Triode Amp. Cath. 6.3 0.85 GT 6Q Triode Amp. Cath. 6.3 0.30 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.15 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.15 GT 7AG Triode Amp. Cath. 6.3 0.15 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.15 ST-12 6Q Triode Amp.	Base Diag. Class Use Type Volts Amp. GT 6Q Triode Amp. Cath. 6.3 0.30 250 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 100g ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.15 250 GT 6Q Triode Amp. Cath. 6.3 0.15 250 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.15 250 GT 7AG Triode Amp. <td>Base Diag. Class Class Use Use Type Type Volts Amp. Volts Volts Volts GT 6Q Triode Amp. Cath. 6.3 0.30 250 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray C ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.15 250 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 </td> <td>Base Diag. Class Diag. Use Type Type Volts Volts Amp. Volts Volts Gr Volts Volts Volts Cath. Volts GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray Control ST-14 8AY Tri. Pent. Tri. Amp. Cath. 6.3 0.85 250 25 GT 6Q Triode Amp. Cath. 6.3 0.85 250 25 GT 6Q Triode Amp. Cath. 6.3 0.15 250 15.0 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 13.5 GT 7AG Triode Amp.<td>Base Style Class Use Type Volts Amp. Volts Grid Volts Grid Mat. end Mat. GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 100§ Ray Control Volts=-7 ST-14 8AY Tri. Pent. Tri. Amp. Cath. 6.3 0.85 250 2.5 3.7 GT 6Q Triode Amp. Cath. 6.3 0.85 250 15.0 7.0 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 7.0 ST-12 7AH Duo. Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 0.01 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 </td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Base Diag. Class Use Type Volts Amp. Volts Grid Ma. rent Volts rent Ma. Resistance Ma. Ma. Ma. Ma. Mas. Mas. Mas. Ohms GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 66.000 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1508 Ray Control Volts=75 for 0° Shadow, = - 6.3 0.85 250 25 3.7 19.000* GT 6Q Triode Amp. Cath. 6.3 0.85 250 15.0 7.0 3.500 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.5 6.5 25.000 3.500 ST-12 7AK Duo. Tri. Amp. Cath. 6.3 0.15 250</td><td>Base Diag. Class Use Type Type Volts Amp. Volts Volts Volts Volts Ma. Volts Ma. Ma. Ma. Ma. Resistance Ohms Factor Ohms GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 66,000 100 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray Control Volts=45 for 0° Shadow,= -23 Volts 6.3 0.15 1508 Ray Control Volts=75 for 0° Shadow,= -20 Volts 9.000 6 ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 250 25 3.7 15.0 7.0 3,500 4.2 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 7.0 3,500 3.3 GT 7AX Duo. Tri. Amp. Cath. 6.3 <td< td=""><td>Base Class Use Type Voits Amp. Voits Voits Voits Voits Voits Ma. Ma.</td></td<></td></td>	Base Diag. Class Class Use Use Type Type Volts Amp. Volts Volts Volts GT 6Q Triode Amp. Cath. 6.3 0.30 250 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray C ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.85 250 GT 6Q Triode Amp. Cath. 6.3 0.15 250 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250	Base Diag. Class Diag. Use Type Type Volts Volts Amp. Volts Volts Gr Volts Volts Volts Cath. Volts GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray Control ST-14 8AY Tri. Pent. Tri. Amp. Cath. 6.3 0.85 250 25 GT 6Q Triode Amp. Cath. 6.3 0.85 250 25 GT 6Q Triode Amp. Cath. 6.3 0.15 250 15.0 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 13.5 GT 7AG Triode Amp. <td>Base Style Class Use Type Volts Amp. Volts Grid Volts Grid Mat. end Mat. GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 100§ Ray Control Volts=-7 ST-14 8AY Tri. Pent. Tri. Amp. Cath. 6.3 0.85 250 2.5 3.7 GT 6Q Triode Amp. Cath. 6.3 0.85 250 15.0 7.0 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 7.0 ST-12 7AH Duo. Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 0.01 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250 </td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Base Diag. Class Use Type Volts Amp. Volts Grid Ma. rent Volts rent Ma. Resistance Ma. Ma. Ma. Ma. Mas. Mas. Mas. Ohms GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 66.000 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1508 Ray Control Volts=75 for 0° Shadow, = - 6.3 0.85 250 25 3.7 19.000* GT 6Q Triode Amp. Cath. 6.3 0.85 250 15.0 7.0 3.500 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.5 6.5 25.000 3.500 ST-12 7AK Duo. Tri. Amp. Cath. 6.3 0.15 250</td> <td>Base Diag. Class Use Type Type Volts Amp. Volts Volts Volts Volts Ma. Volts Ma. Ma. Ma. Ma. Resistance Ohms Factor Ohms GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 66,000 100 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray Control Volts=45 for 0° Shadow,= -23 Volts 6.3 0.15 1508 Ray Control Volts=75 for 0° Shadow,= -20 Volts 9.000 6 ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 250 25 3.7 15.0 7.0 3,500 4.2 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 7.0 3,500 3.3 GT 7AX Duo. Tri. Amp. Cath. 6.3 <td< td=""><td>Base Class Use Type Voits Amp. Voits Voits Voits Voits Voits Ma. Ma.</td></td<></td>	Base Style Class Use Type Volts Amp. Volts Grid Volts Grid Mat. end Mat. GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 100§ Ray Control Volts=-7 ST-14 8AY Tri. Pent. Tri. Amp. Cath. 6.3 0.85 250 2.5 3.7 GT 6Q Triode Amp. Cath. 6.3 0.85 250 15.0 7.0 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 7.0 ST-12 7AH Duo. Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 0.01 GT 7AX Duo. Tri. Amp. Cath. 6.3 0.50 250	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Base Diag. Class Use Type Volts Amp. Volts Grid Ma. rent Volts rent Ma. Resistance Ma. Ma. Ma. Ma. Mas. Mas. Mas. Ohms GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 66.000 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1508 Ray Control Volts=75 for 0° Shadow, = - 6.3 0.85 250 25 3.7 19.000* GT 6Q Triode Amp. Cath. 6.3 0.85 250 15.0 7.0 3.500 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.5 6.5 25.000 3.500 ST-12 7AK Duo. Tri. Amp. Cath. 6.3 0.15 250	Base Diag. Class Use Type Type Volts Amp. Volts Volts Volts Volts Ma. Volts Ma. Ma. Ma. Ma. Resistance Ohms Factor Ohms GT 6Q Triode Amp. Cath. 6.3 0.30 250 2.0 0.9 66,000 100 T-9 7AG Electron Ray Indicator Cath. 6.3 0.15 1008 Ray Control Volts=45 for 0° Shadow,= -23 Volts 6.3 0.15 1508 Ray Control Volts=75 for 0° Shadow,= -20 Volts 9.000 6 ST-14 8AY Tri. Pent. Tri. Amp. Pent. Amp. Cath. 6.3 0.85 250 25 3.7 15.0 7.0 3,500 4.2 ST-12 7AH Duo Plate Tri. Remote Cut-Off Cath. 6.3 0.15 250 15.0 7.0 3,500 3.3 GT 7AX Duo. Tri. Amp. Cath. 6.3 <td< td=""><td>Base Class Use Type Voits Amp. Voits Voits Voits Voits Voits Ma. Ma.</td></td<>	Base Class Use Type Voits Amp. Voits Voits Voits Voits Voits Ma. Ma.

Mutual Conductance for Tetrodes, Pentodes, Etc.
 Conversion Conductance.

Plate to Plate. Through 20,000 Ohms.

§Plate and Target Supply.

S NIA 70 ≻ σ Ο C 8 m S

62

-	Constr					Emitter		Plate	Screen	Neg.	Plate Cur-	Screen Cur-	Plate ①	Amp. (2)	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Туре	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
6B6G	ST-12	7V	Duodi Tri.	Det. Amp.	Cath.	6.3	0.30	250		20	0.9		91,000	100		6Q7GT
6B7, 6B7S	ST-12.	7D	Duodi Pent.	R.F. or I.F. Amp.	Cath.	$\begin{array}{c} 6.3 \\ 6.3 \end{array}$	$\begin{array}{c} 0.30 \\ 0.30 \end{array}$	$\begin{array}{c}100\\250\end{array}$	$\begin{array}{c} 100 \\ 125 \end{array}$	3.0 3.0	5.8 9.0	1.7 2.3	300,000 600,000	950 1,125		
6B8GT	GT	8E	Duodi Pent.	Det. Amp.	Cath.	6.3	0.30	Chara	cteristic	s Same	e as Typ	e 6B7.				
6C6	ST-12	6F	Pentode	Amp. As Triode	Cath.	6.3 6.3 6.3 6.3	0.30 0.30 0.30 0.30	100 250 180 250	100 100	3.0 3.0 5.3 8.0	$2.0 \\ 2.0 \\ 5.3 \\ 6.5$	0.50 0.50 	1 Meg. >1 Meg. 11,000 10,000	$1,185 \\ 1,225 \\ 20 \\ 20$	···· ····	77
6C7	ST-12	7G	Duodi Tri.	Det. Amp.	Cath.	6.3	0.30	250	L., .	9.0	4.5		16,000	20		6SR7GT
6C8G	ST-12	8G	Duo Tri.	Amp. Inv.	Cath.	6.3	0.30	250		4.5	3.2		22,500	36		
6D5G		6Q	Triode	Pwr. Amp.	Cath.	6.3	0.70	275		40	31		7,200	4.7	1,400	
6D6	ST-12	6F	Pentode	Amp.	Cath.	6.3 6.3	$\begin{array}{c} 0.30\\ 0.30\end{array}$	100 250	100 100	3.0 3.0	8.0 8.2	$\begin{array}{c} 2.2\\ 2.0\end{array}$	250,000 800,000	$1,500 \\ 1,600$		78
6D7	ST-12	7H	Pentode	Amp.	Cath.	6.3	0.30	Same	as 6C6.							6C6
6D8G	ST-12	8A	Heptode	Converter	Cath.	6.3 6.3	0.15 0.15	135 250	67.5 100	3.0 3.0	1.5 3.5	1.7 2.6	600,000 400,000	325♥ 550♥	$G_2 = 135 V.$ at 1.8 Ma. $G_2 = 250 V.$ at 4.5 Ma.	7A8
6E6	ST-14	7B	Duotriode	Pwr. Amp.	Cath.	6.3	0.60	180 250		20.0 27.5	11.5 18.0		15,0004 14,0004	6.0 6.0	750 1,600	
6E7	ST-12	7H	Pentode	Amp.	Cath.	6.3	0.30	Sam	e as 6D6	3.						6D6
6F7, 6F7S	ST-12	7E	Tri. Pent.	Amp.	Cath.	6.3	0.30	100 250	(Tri.) 100	3.0 3.0	$3.5 \\ 6.5$	 1.5	$16,200 \\ 850,000$	8.5 1,100	(Pent.)	
6F8G	ST-12	8G	Duo Tri.	Amp. Inv.	Cath.	6.3	0.60	250		8.0	9.0		7,700	20		6SN7GT
6G5/6H5	T-9	6R	Elect. Ray	Indicator	Cath.	6.3	0.30			0-22						6U5/6G5
6H4GT	GT	5AF	Diode	Rect.	Cath.	6.3	0.15	100			4.0					7A6
6H5	T-9	6R	Elect. Ray	Indicator	Cath.	6.3	0.30	Same	as 6G5/	6H5.	<u></u>	·······				6U5/6G5

Load Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

Approximate.
Plate to Plate.
Through 20,000 Ohms.

*Per Tube or Section-No Signal. \$Plate and Target Supply.

LVA N I ≻ ᅍ ≻ D 0 C 8

ш S

S ~

	Constr	Base	Class	TT		Emitter		Plate	Screen	Neg.	Cur-	Screen Cur-	Plate ① Resistance	Amp. (1)	Power	Suggested
Туре	Style	Diag.	Class	Use	Туре	Volts	Amp.	Volts	Volts	Grid Volts	Ma.	rent Ma.	Ohms	Factor	Output Mw.	Replacement Type
6 J4	Min.	7BQ	Triode	Amp.	Cath.	6.3	0.4	150		Self	15.0		4,500	55	200 Ohm C	ath. Bias Resistor
6P7G	ST-12	7U	Pent. Tri.	Amp.	Cath.	6.3	0.30	Same	as 6F7.							_6F7
6Q6, 6Q6G	[î	6Y	Diode Tri.	Det. Amp.	Cath.	6.3	0.15	250		3.0	1.2			65		6 T7 G
6Q6G/6T7G		7V	Duodi Tri.	Det. Amp.	Cath.	6.3	$\bar{0.15}$	250		3.0	1.2			65		6 T 7G
6R6G	ST-12	6AW	Pentode	R.F. Amp.	Cath.	6.3	0.30	250	100	3.0	7.0	1.7	800,000+	1,450		
6SV7	Metal	7AZ .	Diode Pent.		Cath.	6.3 6.3	0.30 0.30	100 250	100 150	1.0 1.0	3.7 7.5	1.4 2.8	700,000 1.5 Meg.	2,600 3,600		
6T5	ST-12	6R	Elect. Ray	Indicator	Cath.	6.3	0.30	250§		0-22	3.0					6U5/6G5
6T7G	ST-12	7V	Duodiode Tri.	Det. Amp.	Cath.	6.3	0.15	$ \begin{array}{r} 100 \\ 250 \end{array} $		$1.5 \\ 3.0$	$0.3 \\ 1.2$		95,000 62,000			
6T7G/6Q6G	ST-12	7V	Duodi Tri.	Det. Amp.	Cath.	6.3	0.15	250		3.0	1.2		62,000	65		6T7G
6V7G	ST-12	7V	Duodi-Triode	Det. Amp.	Cath.	6.3	0.3	Same	Charact	teristics	as Typ	e 85.				
6W5G	ST-12	68	Duo Diode	F.W. Rect.	Cath.	6.3	0.90	325 450	V. RMS V. RMS	Per Pl Per Pl	ate, 90 ate, 90	Ma. DC Ma. DC	Output, Co Output, Ch	nd. Input oke Input	Filter. t Filter.	6X5G
6Y3G	ST-12	4AC	Diode	H.W. Rect.	Cath.	6.3	0.70	5000	4.C. Vo	lts Per	Plate F	MS 7.5	Ma. Output	Current.		2X2A
6Y5	ST-12	6J	Duo Diode	F.W. Rect.	Cath.	6.3	0.80	350	V. RMS	B Per Pl	ate, 50	Ma. DC	Output.			6X5G
6Y5V	ST-12	6 J	Duo Diode	F.W. Rect.	Cath.	6.3	0.80	350	V. RMS	B Per Pl	ate, 60	Ma. DC	Output.			6X5G
6Y7G	ST-12	8B	Duo Triode	Class B Amp.	Cath.	6.3	0.6	Same	Charac	teristics	as Typ	be 79.				
6Z3		4G	Diode '	H.W. Rect.	Cath.	6.3	0.30	350	V. RMS	B Plate,	50 Ma.	DC Out	put.	1		1V
6Z4, 6Z4/84	ST-12	5D	Duo Diode	F.W. Rect.	Cath.	6.3	0.50	350	V. RMS	B Per Pl	ate, 60	Ma. DC	Output, Co	nd. Input	Filter.	6X5G
6Z5, 6Z5/12Z5	ST-12	6K	Duo Diode	F.W. Rect.	Cath.	$\begin{array}{c} 6.3\\ 12.6\end{array}$	0.80 0.40	230	. RMS	Per Pl	ate, 60	Ma. DC	Output.			6X5G 14Y4
6Z7G	ST-12	8B	Duo Triode	Class B Amp.	Cath.	6.3	0.3	. 135 180		0	60 60	· · · · ·		9,000 12,000	2,500 4,200	
6ZY5G	ST-12	6S	Duo Diode	F.W. Rect.	Cath.	6.3	0.30	325	. RMS	Per Pl	ate, 40	Ma. DC	Output, Co	nd. Input	Filter.	6X5G or 14Y4
7A7LM	Metal	8V	Pentode	Amp.	Cath.	6.3	0.30	250	100	3.0	8.6	2.0	800,000	2,000		7A7

≽ z _ ≻ ᅍ ≻ D Ó -C œ m

S ≺ -<

S

Doad Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

•Approximate. •Plate to Plate. •Through 20,000 Ohms.

*Per Tube or Section—No Signal. \$Plate and Target Supply.

, ,	Constru					Emitter			Screen	Neg.	Cur-	Screen Cur-	Plate ①	Amp. ③		Suggested
Туре	Style	Base Diag.	Class	Use	Туре	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
7AB7	Lock In	8BO	Pentode	Amp.	Cath.	6.3	0.15	250	100	2.0	4.0	1.3	500,000	1,800		
7B5LT	T-9	6AE	Pentode	Pwr. Amp.	Cath.	6.3	0.40	250 315	$\begin{array}{c} 250 \\ 250 \end{array}$	$18.0 \\ 21.0$	$\begin{array}{c} 32.0\\ 25.5\end{array}$	$5.5 \\ 4.0$	7,600 9,000	2,300 2,100	3,400 4,500	785
7B6LM	Metal	8W	Duodi Tri.	Det. Amp.	Cath.	6.3	0.30	100 250		$1.0 \\ 2.0$	0.4 0.9	· • • • •	110,000 91,000	100 100		7B6
7B8LM	Metal	8X	Heptode	Converter	Cath.	6.3	0.30	100 250	50 100	1.5 3.0	1.1 3.5	1.3 2.7	600,000 360,000	360♥ 550♥	G ₂ =100 V. at 2.0 Ma. G ₂ =250 V. at 4.0 Ma.	7B8
7C4	Lock-In	4AH	H.F. Diode	Detector	Cath.	6.3	0.15	117	V. RMS		5.0	Resons	nt Frequen	cy 900 M	c.	
7C5LT	T-9	6AA	Beam Amp.	Pwr. Amp.	Cath.	6.3	0.45	250 315	250 225	12.5 13.0	45.0 34.0	4.5 2.2	5,000 8,500	4,100 3,750	4,500 5,500	7C5
7T7	Lock-In	8V	Pentode	Amp.	Cath.	$ \begin{array}{r} 6.3 \\ 6.3 \end{array} $	0.30 0.30	100 250	100 150	1.0 1.0	5.3 10.8	2.1 4.1	350,000 900,000	4,000 4,900		
10	ST-16	4D	Triode	Pwr. Amp.	Fil.	7.5	1.25	250 350 425	 	23.5 32.0 40.0	10.0 16.0 18.0	 	13,000 11,000 10,200	8.0 8.0 8.0	400 900 1,600	
WD11	T-8	4F	Triode	Det. Amp.	Fil.	1.1	0.25		Det. + Amp.		5 to 5. 2.5		Frid Leak. 15,500	6.6		
WX12	T-10	4D	Triode	Det. Amp.	Fil.	1.1	0.25	Same	as WD	11.		,				
12A, 112A	ST-14	4D	Triode	Det. Amp.	Fil.	5.0	0.25	90 135		4.5 9.0	$5.0 \\ 6.2$		5,400 5,100	8.5 8.5	35 130	
12A5	ST-12	7F	Pentode	Pwr. Amp.	Cath.	$ \begin{array}{r} 12.6 \\ 6.3 \end{array} $	0.30 0.60	100 180	100 180	$ \begin{array}{r} 15.0 \\ 25.0 \end{array} $	19.0 48.0	6.0 14.0	4,500 3,300	1,700 2, 4 00	800 3,400	
12A6	Metal	7AC	Beam Amp.	Pwr. Amp.	Cath.	12.6	0.15	250	250	12.5	30	3.5	7,500	3,000	3,400	
12A6GT	T-9	7AC	Beam Amp.	Pwr. Amp	Cath.	12.6	0.15	Same	as 12A	6.						

Load Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ▼ Conversion Conductance.

◆Approximate. ↓Plate to Plate. ■Through 20,000 Ohms.

Per Tube or Section—No Signal. §Plate and Target Supply.

S **VIV**A z ≻ ᅍ ⋗ D 0 C ω m Ś

\$

	Constru					Emitter			Screen		Plate Cur-	Screen Cur-		Amp. ②	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Type	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
12A7	ST-12	7K	Diode Pent.	Rect. Amp.	Cath.	12.6	0.30	$ \begin{array}{r} 125 \\ 135 \end{array} $	V. RMS 135	Plate, 13.5	30 Ma. 9.0	DC Out	put (Rect.) 13,500	975	550	
12AH7GT	GT	8BE	Duotriode	Amp.	Cath.	12.6	0.15	100 180		$ \begin{array}{c} 3.6 \\ 6.5 \end{array} $	$3.7 \\ 7.6$		10,300 8,400	16 16		
12B7	Lock In	8V	Pentode	Amp.	Cath.	12.6	0.15	Same	as Lock	In Ty	pe 14A7	·				14A7
12B8GT	GT	8T	Triode Pentode	Tri. Amp. Pent. Amp.	Cath.	12.6	0.30	90 90	· · ģö	$\begin{array}{c} 0.0\\ 3.0\end{array}$	2.8 7.0	2.0	37,000 200,000	90 1,800	••••	6AT6 6BA6
12C8	Metal	8E	Duodi Pent.	Det. Amp.	Cath.	12.6	0.15	See T	ype 6B8	3.			199			
12L8GT	GT	8BU	Duo Pentode	Pwr. Amp.	Cath.	12.6	0.15	110 180	110 180	$5.5 \\ 9.0$	6.1* 13.0*		14,000 # 10,000 #	1,680 # 2,150 #	300 * 1,000 *	
12Z3	ST-12	4 G	Diode	H.W. Rect.	Cath.	12.6	0.30	235	V. RMS	Per P	ate, 55	Ma. DC	Output, Co	ndenser In	put Filter.	0
12Z5		7L	Duo Diode	Rect. Doub.	Cath.	12.6	0.30	225	V. RMS	Per Pl	ate, 60	Ma. DC	Output, Co	ndenser In	put Filter.	
13		4C	Duo Diode	F.W. Rect.	Fil.	5.0					· · · · _					80
14Z3		4 G	Diode	H.W. Rect.	Cath.	14.0	0.30	250	V. RMS	Plate,	60 Ma.	DC Out				12Z3
15	ST-12	5F	Pentode	Amp.	Cath.	2.0	0.22	135	67.5	1.5	1.85	0.3	800,000	750		
16, 16B		4B	Diode	H.W. Rect.	Fil.	7.5										81
18	ST-14	6B	Pentode	Pwr. Amp.	Cath.	14.0	0.30		Гуре 6F	6G.						
19	ST-12 GT	6C .	Duo Tri.	Pwr. Amp.	Fil.	$2.0 \\ 2.0 \\ 2.0 \\ 2.0$	0.26	135 135 135	· · · · · · · · · ·	$ \begin{array}{c} 0 \\ 3.0 \\ 6.0 \end{array} $	10.0 3.4 0.2	· · · · ·	10,0004 10,0004 10,0004	· · · · · • · · · ·	2,100 1,900 1,600	57 建 之。
20	Т-8	4D	Triode	Pwr. Amp.	Fil.	3.3	0.132	90 135		$\begin{smallmatrix}16.5\\22.5\end{smallmatrix}$	$\begin{array}{c} 2.8 \\ 6.0 \end{array}$		9,600 6,500	3.5 3.5	50 130	
22	ST-14	4K	Tetrode	Amp.	Fil.	3.3	0.132	135	67.5	1.5	3.7	1.3	250,000	500		
22AC		5E	Tetrode	Amp.	Cath.	2.5	1.75	250	90	3.0	4.0	1.7		1,050		24A

① Load Resistance for Power Output Tubes.
 ② Mutual Conductance for Tetrodes, Pentodes, Etc.
 ▼ Conversion Conductance.

◆Approximate. ♦Plate to Plate. ■Through 20,000 Ohms.

#Per Tube or Section—No Signal. §Plate and Target Supply.

.VAN ≻ 70 ≻ D 0 -8 m S

1 A

S

٩.

616 C 1845	
A.S.A	
S. J. M. W.	5
	1

			,													
Туре	Constr	uction Base	Class	Use		Emitter		Plate Volts	Screen Volts	Neg. Grid	Plate Cur- rent	Screen Cur- rent	Plate (1) Resistance	Amp. ③ Factor	Power Output	Suggested Replacemen
	Style	Diag.	Class	086	Type	Volts	Amp.	Volts	Voits	Volts	Ma.	Ma.	Ohms	Factor	Mw.	Туре
24A, 24S	ST-14	5E	Tetrode	R.F. Amp.	Cath.	$2.5 \\ 2.5$	$1.75 \\ 1.75$	180 250	90 90	3.0	4.0	1.7	400,000 600,000	1,000 1,050		
25, 258		6M	Duodi Tri.	Det. Amp.	Fil.	2.0	0.06	135		3.0	1.0			20		1B5/25S
25A7GT	GT	8F	Di. Pent.	H.W. Rect, Pwr. Amp.	Cath.	$25.0 \\ 25.0$	0.30	117 100	A-C 1 100	Volts P 15.0	er Plate 20.5	, RMS, 4.0	75 Ma. Out 4,500	put Current. 1,800	770	
25AC5GT	GT	6Q	Triode	Pwr. Amp. Dyn. Coup. Amp.	Cath.	$\begin{array}{c} 25.0\\ 25.0\end{array}$	0.30 0.30	110 165	Bias fr 6AE50 Driver	łΤ	45.0 46.0	· · · · · · · · ·	$15,200 \\ 2,000$	58 	2,000	
25B5	ST-12	6D	Duo Tri.	Pwr. Amp.	Cath.	.25.0	0.30	See	Type 25	N6G.	•					
25B6G	ST-14	78	Pentode	Pwr. Amp.	Cath.	.25.0	0.30	105 200	105 135	$16.0 \\ 23.0$	48.0 62.0	$2.0 \\ 1.8$	$1,700 \\ 2,500$	4,800 5,000	$2,400 \\ 7,100$	25A6GT
25B8	T-9	8T	Triode Pentode	Tri. Amp. Pent. Amp.	Cath. Cath.	25	0.15	100 100	100	1.0	0.6	2.0	75,000 185,000	112 370		*
25D8GT		8AF	Di. Tri. Pent.	Det. Amp.	Cath.	25.0	0.15	100 100	100	1.0	.5 8.5	2.7	· · · · ·	100 1,900	(Tri.) (Pent.)	12AV6 and 12BD6
25N6G	ST-12	7W	Duo Tri.	Pwr. Amp.	Cath.	.25.0	0.30	110 180	110* 100*	0	45 46	7.0* 5.8*	2,000 4,000		2,000 3,800	· · · ·
25Y5	ST-12	6E	Duo Diode	Rect. Doub.	Cath.	25.0	0.30	117 235					Output, Pe tput Per Pla			25Z5
KR25		6B	Pentode	Pwr. Amp.	Cath.	* 2.5	1.75	250	250	16.5	3.4	6.5	7,000	2,200	3,000	2A5
26	ST-14	4D	Triode	Amp.	Fil.	1.5	1.05	90 180		7.0	$ \begin{array}{c} 2.9 \\ 6.2 \end{array} $	· · · · · ·	8,900 7,300	8.3 8.3		
26A6	T-5½	7BK	Pentode	R.F. Amp.	Cath.	26.5	0.07	$ \begin{array}{r} 26.5 \\ 250 \end{array} $	26.5 250		$1.7 \\ 10.5$	0.7 4.0	250,000 1,000,000			
26A7	T-9	8BU	Duo Pent.	Pwr. Amp.	Cath.	26.5	0.6	26.5	26.5	4.5	20	2.0	1,500	5,500 *	200	
26C6	T-51/2	7BT	Duodi, Tri.	Det. Amp.	Cath.	26.5	0.07	Same	Charac	teristics	as Typ	e 7E6.		·		

Doad Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

*Screen Listings refer to Input Triode. * Per Tube or Section—No Signal. \$Plate and Target Supply.

6

S

≻ 邓 ⊳ σ 0 ----j σ m S

1 .

	Constr	uction				Emitter		Dista	Screen	Nor	Plate Cur-	Screen Cur-	Plate ①	Amp. ③	Power	Suggested
Туре	01-1-	Base	Class	Use			i	Volts	Volts	Grid	rent	rent	Resistance	Factor	Output	Replacement
	Style	Diag.			Type	Volts	Amp.			Volts		Ma.	Unms		Mw.	Туре
26D6	T-51/2	7CH	Heptode	Converter	Cath.	26.5	0.07	26.5	26.5	0.5	0.45	1.6		270		
				х.	· · .			100 250	100 100	$1.5 \\ 1.5$	2.8 3.0	8.0 7.8	500,000 1,000,000	455 475		- 10 C
27, 278	ST-12	5A	Triode	Amp.	Cath.	2.5	1.75	90		6.0	3.0		10,000	9.0		
						$2.5 \\ 2.5$	$1.75 \\ 1.75$	135 180	••••	$9.0 \\ 13.5$	4.7 5.0	••••	9,000 9,000	9.0 9.0	• • • •	
	í I					2.5	1.75	250		21.0	5.2		9,250	9.0		
				Detector		2.5	1.75	250		30.04	Adju	st Bias fo	or 0.2 Ma. I	Plate Curre	nt Without	Signal.
27HM		5A	Triode	Amp.	Cath.	2.5	1.75	180		13.5	5.0		9,600	13		56
28Z5	Lock-In	6BJ	Double Diode	F.W. Rect.	Cath.	$28.0 \\ 28.0$	$0.24 \\ 0.24$	$325 \\ 450$	A-C V A-C V	olts Polts Po	er Plate er Plate	, RMS, , RMS,	100 Ma. Out 100 Ma. Out	put Curren put Curren	t. Condense t, 6h Choke	r Input to Filte Input to Filter
KR28		5D	Duo Diode	F.W. Rect.	Cath.	6.3	0,50	350	v. RMS	, 50 M	a. DC (Jutput.				84, 6Z4
30	ST-12	4D	Triode	Amp.	Fil.	2.0	0.06	90		4.5	2.5		11,000	9.3		
				-		$2.0 \\ 2.0$	0.06 0.06	135 180		$9.0 \\ 13.5$	3.0 3.1		10,300 10,300	$9.3 \\ 9.3$		
31	ST-12	4D	Triode	Pwr. Amp.	Fil.	$2.0 \\ 2.0$	0.13 0.13	135 180		$\begin{array}{c} 22.5\\ 30.0 \end{array}$	$\frac{8.0}{12.3}$		7,000 5,700	3.8 3.8	185 375	
32	ST-14	4K	Tetrode	R.F. Amp.	Fil.	2.0	0.06	135	67.5	3.0	1.7	0.4	950.000	640		·····
				Detector		$2.0 \\ 2.0$	$0.06 \\ 0.06$	180 180	67.5 67.5	3.0 6.0	1.7	0.4	1.2 Meg. or 0.2 Ma. I	650 I	A TRACE	St
32L7GT	GT	8Z	Diode Beam	Rectifier	Cath.	$\frac{2.0}{32.5}$	0.00						Dutput Curr			
02L/G1	GT	04	Amplifier	Recuber	Catu.	32.0	0.00	1201	1 1 1		Flate,	00 Ma. (Juiput Cuir		iser input t	o ritter.
				Pwr. Amp.		32.5	0.30	110	110	7.5	40.0	3.0	2,600	6,000	1,000	*
33	ST-14	5K	Pentode	Pwr. Amp.	Fil.	$\begin{array}{c} 2.0 \\ 2.0 \end{array}$	0.26	135 180	135 180	$13.5 \\ 18.0$	$14.5 \\ 22.0$	$3.0 \\ 5.0$	7,000 6,000	1,450 1,700	700 1,400	
34	ST-14	4M	Pentode	R.F. Amp.	'Fil.	2.0	0.06	67.5	67.5	3.0	2.7	1.1	400,000	560		
						$\begin{array}{c} 2.0\\ 2.0\end{array}$	$0.06 \\ 0.06$	135 180	67.5 67.5	3.0	$\frac{2.8}{2.8}$	$1.0 \\ 1.0$	600,000 1 Meg.	600 620	• • • •	
35/51, 358/518	ST-14	5E	Tetrode	R.F. Amp.	Cath.	$2.5 \\ 2.5$	$1.75 \\ 1.75$	180 250	90 90	3.0 3.0	6.3 6.5	$2.5 \\ 2.5$	300,000 400,000	1,020 1,050		

① Load Resistance for Power Output Tubes.
 ② Mutual Conductance for Tetrodes, Pentodes, Etc.
 ▼ Conversion Conductance.

5.7

Approximate.
Plate to Plate.
Through 20,000 Ohms.

*Per Tube or Section—No Signal. \$Plate and Target Supply.

67

S ~

LVA N I

≻ ᅍ ≻ σ _ 0 -C B m S

68

S ~

LVA N I

Ъ ᅍ ≻ σ 0

σ m S

OBSOLETE AND SELDOM ENCOUNTERED TYPES-Cont.

	Constr				E	Emitter		Plate	Screen	Neg.	Plate Cur-	Screen Cur-	Plate ①	Amp. ②	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Type	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
35A5LT	T-9	5AA	Beam Pwr.	Amp.	Cath.	35.0	0.15	110	110	7.5	40	3.0	2,500	5,800	1,500	35A5
35Z3LT	Т-9	4Z	Diode	H.W. Rect.	Cath.	35.0	0.15	235	V. RMS	Plate,	100 Ma	DC O	itput.			35Z3
35Z6G	ST-14	7Q	Duo Diode	Doub. Rect.	Cath.	35.0	0.30	117	V. RMS	Plate,	110 Ma	. DC 0	itput.			
36, 36A	ST-12	5E	Tetrode	R.F. Amp. Detector	Cath.	6.3 6.3 6.3 6.3 6.3	0.30 0.30 0.30 0.30 0.30 0.30	100 135 180 250 250	55 67.5 90 90 20 to 25	$ \begin{array}{c c} 1.5 \\ 1.5 \\ 3.0 \\ 3.0 \\ 6.0 \\ \end{array} $	1.8 2.8 3.1 3.2 Adju	Not over ½ Plate Cur. st Bias f	550,000 475,000 500,000 550,000 or .1 Ma. P	850 1,000 1,050 1,080 ate Curren	t Without £	jignal.
37, 37A	ST-12	5A	Triode	Amp.	Cath.	$ \begin{array}{r} 6.3 \\ 6.3 \\ 6.3 \\ 6.3 \end{array} $	$\begin{array}{r} 0.30 \\ 0.30 \\ 0.30 \\ 0.30 \\ 0.30 \end{array}$	90 135 180 250	· · · · · · · · · · · · · · · · · · ·	6.0 9.0 13.5 18.0	2.5 4.1 4.3 7.5	· · · · · · · · · · · · · · · · · · ·	11,500 10,000 10,200 8,400	9.2 9.2 9.2 9.2 9.2		-
38, 38A	ST-12	5F	Pentode	Pwr. Amp.	Cath.	6.3 6.3 6.3 6.3	$\begin{array}{c} 0.30 \\ 0.30 \\ 0.30 \\ 0.30 \\ 0.30 \end{array}$	100 135 180 250	100 135 180 250	$9.0 \\ 13.5 \\ 18.0 \\ 25.0$	7.0 9.0 14.0 22.0	$1.2 \\ 1.5 \\ 2.4 \\ 3.8$	15,000 13,500 11,600 10,000	875 925 1,050 1,200	270 550 1,000 2,500	
39, 39/44, 39A	ST-12	5F	Pentode	R.F. Amp.	Cath.	$ \begin{array}{r} 6.3 \\ 6.3 \\ 6.3 \end{array} $	0.30 0.30 0.30	90 180 250	90 90 90	3.0 3.0 3.0	5.6 5.8 5.8	1.6 1.4 1.4	375,000 750,000 1 Meg.	960 1,000 1,050		
40	ST-14	4D	Triode	Amp.	Fil.	5.0	0.25	135		1.5	0.2		150,000	30		
40Z5/45Z5GT	GT	6AD	Diode	H.W. Rect.	Cath.	45	0.15	Cha	racterist	ics san	ie as Ty	pe 35Y4	•			
41	ST-12	_6B	Pentode	Pwr. Amp.	Cath.	.6.3	0.40						T and 7B5.		*	
42	ST-14	<u>6B</u>	Pentode	Pwr. Amp.	Cath.	6.3	0.65	-	racterist							
43	ST-14	6B	Pentode	Pwr. Amp.	Cath.	25.0	0.30		racterist			pe 25A6	GT.			
44		5F	Pentode	Amp.	Cath.	6.3	0.30		Type 39				0.000			39/44
45	ST-14	4D	Triode	Pwr. Amp.	Fil.	$2.5 \\ 2.5 \\ 2.5 \\ 2.5$	$1.5 \\ 1.5 \\ 1.5 \\ 1.5$	180 250 275	· · · · · ·	$ \begin{array}{r} 31.5 \\ 50.0 \\ 56.0 \end{array} $	$31.0 \\ 34.0 \\ 36.0$	••••	$2,700 \\ 3,900 \\ 4,600$	3.5 3.5 3.5	830 1,600 2,000	
45A		4D	Triode	Pwr. Amp.	Fil.	2.5	1.50	325		68	43		3,200	3.5	3,000	45

Doad Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

Approximate.
Plate to Plate.
Through 20,000 Ohms.

* Per Tube or Section-No Signal. \$Plate and Target Supply.

	Constr	uction	*			Emitter		Plate	Screen	Neg.	Plate Cur-	Screen Cur-	Plate ①	Amp. ③	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Type	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacemen Type
46	ST-16	5C	Dual Grid	Pwr. Amp.	Fil.	2.5	1.75	250	Tie Gs	33.0	22.0		6,400	5.6	1,250	
			Triode	(Class B)		2.5	1.75	300	to P Tie Gs to G	0		eak per ibe	5,2004	2 Tubes	16,000	
	i			(Class B)		2.5	1.75	400	Tie Gs to G	0	200 P	eak per ibe	5 ,800 ቆ	2 Tubes	20,000	
47	ST-16	5B	Pentode	Pwr. Amp.	Fil.	2.5	1.75	250	250	16.5	31.0	6.0	7,000	2,500	2,700	2A5
48	ST-16	6A	Tetrode	Pwr. Amp.	Cath.	30.	0.40	$ \begin{array}{r} 95 \\ 125 \end{array} $	95 100	$20.0 \\ 22.5$	52 52	$\substack{12.0\\12.0}$	$1,500 \\ 1,500$	3,900 3,900	2,000 3,000	
49	ST-14	5C	Dual Grid Tri.	Class A Amp. Class B Amp.	Fil.	2.0	0.12	135 180	Gs to P Gs to G	20 0	6.0 4.0	2 tubes	11,000 12,000	4.7	170 3,500	3
50	ST-16	4D	Triode	Pwr. Amp.	Fil.	7.5 7.5 7.5 7.5	$1.25 \\ 1.25 \\ 1.25 \\ 1.25 \\ 1.25 \\ 1.25$	300 350 400 450	· · · · · · · · · ·	63.0 70.0	$35.0 \\ 45.0 \\ 55.0 \\ 55.0 \\ 55.0 \\ $		4,600 4,100 3,670 4,350	3.8 3.8 3.8 3.8 3.8	1,600 2,400 3,400 4,600	
50Z7G	ST-12	8AN	Duo Diode	F.W. Rect.	Cath.	50	0.15	117 V	RMS	Per Plat	te, 65 N	fa. DC (Dutput.			
EF50	Lock-In	9C	Pentode	R.F. Amp.	Cath.	6.3	0.3	250	250		10	3.1	600,000			
HZ50		4G	Diode	H.W. Rect.	Cath.	12.6	0.30	250	V. RMS	Plate,	60 Ma.	DC Out	put.			12Z3
51, 518	ST-14	5E	Tetrode	Amp.	Cath.	2.5	1.75	See ?	Гуре 35	, 35/51.						35 -
52	ST-14	5C	Dual Grid Tri.	Class A Amp. Class B Amp.	Fil.	6.3	0.30	110 180	2 Tube	0 0	43 3.0	• • • •	2,000 10,000	5.2	1,500 5,000	6A4/LA
53	ST-14	7B	Duo. Tri.	Pwr. Amp.	Cath.	2.5	2.0	Char	acterist	ics same	e as Ty	pe 6N7G	T.			12
55	ST-12	6G	Duodi Tri.	Det. Amp.	Cath.	2.5	1.0					pe 6V7G				
55S	ST-12	6G	Duodi Tri.	Det. Amp.	Cath.	2.5	1.00	250		20	8.0		7,500	8.3	350	55
56, 568 '	ST-12	5A	Triode	Amp. Det.	Cath.	$\begin{array}{c} 2.5\\ 2.5\end{array}$	$1.0 \\ 1.0$	250 250		13.5 20.0♦	5.0 Adjus	t Bias fo	9,500 or 0.2 Ma. I	13.8 Plate Curren	nt Without	Signal.
56AS	ST-12	5A	Triode	Amp.	Cath.	6.3	0.40	250		13.5	5.0		9,500	13.8		76

Load Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

Approximate.
Plate to Plate.
Through 20,000 Ohms.

*Per Tube or Section—No Signal. \$Plate and Target Supply.

S ~ < Þ z ≻ 70 ≻ σ 0 C B m S

_	Constr					Emitter			Screen	Neg.	Plate Cur-	Screen Cur-	Plate (1)	Amp. ()	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Type	Volts	Amp.	Volts	Volts	Grid Volts	ma.	rent Ma.	Resistance Ohms	Factor	Output Mŵ.	Replacement Type
57, 578	ST-12	6 F	Pentode	Amp.	Cath.	$2.5 \\ 2.5$	$1.0 \\ 1.0$	$\begin{array}{r}100\\250\end{array}$	100 100	$\frac{3.0}{3.0}$	$2.0 \\ 2.0$	0.5	1 Meg. 1 Meg.	$1,185 \\ 1,225$		
			1 1	Det.		$2.5 \\ 2.5$	1.0	250		4.3			or 0.1 Ma	Plate Curre	nt Without	Signal.
57AS	ST-12	6F	Pentode	Amp.	Cath.	6.3	0.40	250	100	3.0	2.0	0.5	1 Meg.	1,225		6C6
58, 588	ST-12	6F	Pentode	Amp.	Cath.	$2.5 \\ 2.5$	1.0 1.0	$100 \\ 250$	100 100	$3.0 \\ 3.0$	8.0 8.2	$2.2 \\ 2.0$	250,000 800,000	1,500 1,600		
58AS	ST-12	· 6F	Pentode	Amp.	Cath.	6.3	0.40	250	100	3.0	8.2	2.0	800,000	1,600		6D6-78
59	ST-16	7A	Pentode	Pwr. Amp. Triode	Cath.	$2.5 \\ 2.5$	$\begin{array}{c} 2.0 \\ 2.0 \end{array}$	250 250	250 Tie Gs to P	18.0 28.0	$ \begin{array}{r} 35.0 \\ 26.0 \end{array} $	9.0 	6,000 5,000	2,500 2,600	3,000 1,250	
				Triode— Class B Triode— Class B	•••••	2.5 2.5	2.0 2.0		Tie Gs to G and Su to P	0			4,6004 6,0004	•••• •••• 8	15,000 (2 20,000 (2	
59B	1	7M	Pentode	Pwr. Amp.	Fil.	2.5	2.0	250	250	18.0	35.0	9.0	6,000		3,000	(See Type 59)
64, 64A		5 E	Tetrode	Amp.	Cath.	6.3	0.40	180	90	3.0	3.1	1.5	500,000	1,050		36
65, 65A		5E	Tetrode	Amp.	Cath.	6.3	0.40	180	90	3.0	4.5	1.3	750,000	1,000		39/44
67, 67A		5A.	Triode	Det. Amp.	Cath.	6.3	0.40	180		13.5	4.3		10,200	9.2	·	37
68, 68A		5E	Pentode	Pwr. Amp.	Cath.	6.3	0.40	135	90	13.5	14	3.0	7,500	1,400	650	38
70A7GT	T-9	8AB	Di. Beam Amp	H.W. Rect. Pwr. Amp.	Cath.	70.0	0.15	$125 \\ 110$	V. RMS 110	Plate, 7.5	60 Ma 40	Output. 3.0	2,500	5,800	1,500	70L7GT
71	ST-14	4D	Triode	Pwr. Amp.	Fil.	5.0	0.50	180		40.5	20		4,800	3	790	71A
71A	ST-14	4D	Triode	Pwr. Amp.	Fil.	$5.0 \\ 5.0 \\ 5.0 \\ 5.0$	$\begin{array}{c} 0.25 \\ 0.25 \\ 0.25 \end{array}$	90 135 180	· · · · · · · · · ·	$ \begin{array}{r} 16.5 \\ 27.0 \\ 40.5 \end{array} $	10.0 17.3 20.0	· · · · · · · · · · · · · · · · · · ·	3,000 3,000 4,800	3 3 3	125 400 790	
71B	ST-14	4D	Triode	Pwr. Amp.	Cath.	5.0	0.125	180		40.5	20		4,800	3	790	71A

① Load Resistance for Power Output Tubes.
 ② Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

•Approximate. •Plate to Plate. •Through •,000 Ohms.

†Applied through 250,000 Ohms. * Per Tube or Section—No Signal. \$Plate and Target Supply.

S ~ ۲ ۲ Z ≻ R ≻ σ _ 0 -C œ ш S

	Constr	uction				Emitter		Plate	Screen	Neg.	Plate Cur-	Screen Cur-	Plate ①	Amp. ②	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Type	Volts	Amp.		Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacemen Type
75, 758	ST-12	6G	Duodi Tri.	Det. Amp.	Cath.	6.3	0.30	250		2.0	0.9		91,000	100		
76	ST-12	5A	Triode	Amp. Det.	Cath.	$ \begin{array}{r} 6.3 \\ 6.3 \\ 6.3 \end{array} $	$ \begin{array}{r} 0.30 \\ 0.30 \\ 0.30 \end{array} $	$100 \\ 250 \\ 250$	••••	5.0 13.5 20.0◆	2.5 5.0 Adjus	 t Bias fo	12,000 9,500 or 0.2 Ma H	13.8 13.8 Plate Curre	nt Without	Signal.
77	ST-12	6F	Pentode	Amp.	Cath.	6.3 6.3	0.30	100 250	60 100	$1.5 \\ 3.0$	1.7 2.3	0.4	600,000 >1.0 Meg.	$1,100 \\ 1,250$		
78	ST-12	6F	Pentode	Amp.	Cath.	6.3 6.3 6.3 6.3	0.30 0.30 0.30 0.30	90 180 250 250	90 75 100 125	3.0 3.0 3.0 3.0 3.0	5.4 4.0 7.0 10.5	$1.3 \\ 1.0 \\ 1.7 \\ 2.6$	300,000 1 Meg. 800,000 600,000	1,275 1,100 1,450 1,650	· · · · · · · · · · · · · · · · · · ·	*
79	ST-12	6H	Duo Tri.	Pwr. Amp.	Cath.	6.3	0.60	250	Class B	0	21.0	Both Triodes	14,000	• • • •	8,000	6N7
80M		4C	Duo Di. M.V.	F.W. Rect.	Fil.	5.0	2.00	450	V. RMS	Per Pl	ate, 125	Ma. Do	C Output.			80
81, 81M	ST-16	4B	Diode	H.W. Rect.	Fil.	7.5	1.25	700	A-C V	olts Pe	er Plate,	RMS, 8	35 Ma. Outr	out Current	. Condense	r Input to Filte
82V		• • • •					*									82 .
84/6Z4	ST-12	5D	Duodiode	F.W. Rect.	Cath.		$\begin{array}{c} 0.50 \\ 0.50 \end{array}$	325 450	A-C V	/olts Pe /olts Pe	er Plate, er Plate,	RMS, 6 RMS, 6	50 Ma. Outr 50 Ma. Outr	out Current	. Condense . 10h Chok	r Input to Filte e Input to Filte
G84		4B	Diode	H.W. Rect.	Fil.	2.5	1.50	350	V. RMS	Plate,	50 Ma.	DC Out	put.			2Z2/G84
G84/2Z2		4B	Diode	H.W. Rect.	Fil.	2.5	1.50	350	V. RMS	Plate,	50 Ma.	DC Out	put.			2A6
85	ST-12	6G	Duodi Tri.	Det. Amp.	Cath.	6.3	0.30	Char	acterist	ics sam	е аз Ту	pe 6V7G				6V7G
85AS	ST-12	6G	Duodi Tri.	Det. Amp.	Cath.	6.3	0.30	250		9.0			16,000	20		85
88		4C	Duo Diode	F.W. Rect.	Fil.	5.0	2.00	450				Ma. Do	COutput.			83V
89	ST-12	6F	Pentode	Pwr. Amp. Triode	Cath.	$\begin{array}{c} 6.3 \\ 6.3 \end{array}$	0.40 0.40	180 160	180 Gs+Su to P		20.0 17.0	3.0 ••••	8,000 7,000	1,550 4.7	1,500 300	
				Triode Class B		6.3	0.40	180	Tie Su to P	0	3.0		9,4006	Tie Gs to G	3,500 (2	tubes)
89Y								Same	as Type	89. H	as low-lo	oss base.				

Load Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 Conversion Conductance.

◆Approximate. ◆Plate to Plate. ●Through 20,000 Ohms.

*Per Tube or Section—No Signal. Plate and Target Supply.

Z

S ~

LVANIA

ᅍ ≻ D 0

-C œ Π S

Туре	Constr	uction Base	Class	Use		Emitter		Plate	Screen	Neg.	Plate Cur-	Screen Cur-	Piate ①	Amp. ③ Factor	Power	Suggested Replacement
Type	Style	Diag.	Class	Use	Type	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Type
VR90/30	ST-12	4AJ	Diode	Voltage Reg.	Cold K			See	Гуре ОБ	33.						0B3
95		6B	Pentode	Pwr. Amp.	Cath.	2.5	1.75	315	315	22.0	42	8.0	7,000	2,300	5,000	2A5
96		4 G	Diode	H.W. Rect.	Cath.	10.0	0.50	350	V. RMS	Plate,	100 M	a. DC O	utput.			1V
98	T			<u>.</u>												84
V99	T-8	4E	Triode	Det. Amp.	Fil.	3.3	.063	90		4.5	2.5		15,500	6.6		
X99	T- 9	4D	Triode	Det. Amp.	Fil.	3.3	.063	Sam	e as V99	Э.						
VR105/30	ST-12	4AJ	Diode	Voltage Reg.	Cold K			See	Гуре Об	C3.						OC3
117P7GT	GT	8AV	Diode Beam Amp.	H.W. Rect. Pwr. Amp.	Cath.	117.0	0.09	117 105		Plate, 5.2	75 Ma. 43	DC Ou 4.0	tput. 1 4,000	5,300	850	*
117Z4GT	GT	5AA	Diode	H.W. Rect.	Cath.	117	0.04	117		Plate.	90 Ma	DC Ou	tput.			
143D			Diode	H.W. Rect.				1								2X2
VR150/30	ST-12	4AJ	Diode	Voltage Reg.	Cold K			See	Type Ol	D3.						OD3
182B/482B	ST-14	4D	Triode	Pwr. Amp.	Fil.	5.0	1.25	250		35.0	20		4,500	5.0	1,350	71A or 45
183/483	ST-14	4D	Triode	Pwr. Amp.	Fil.	5.0	1.25	250		65.0	20		4,500	3.0	1,800	71A or 45
210T	ST-16	4D	Triode	Pwr. Amp.	Fil.	7.5	1.25	Stan	dard Ty	pe 10	with Ce	ramic B	se, See Typ	e 10 Charao	cteristics.	
288																83V
401	T]	4D	Triode	Det. Amp.	Cath.	3.0	1.35	90		3.0	5.0		9,500	9.5		27
482A		4D	Triode	Pwr. Amp.	Fil.	5.0	0.80	200		45.0	18		4,500	2.0	1,500	71A
482B		4D	Triode	Pwr. Amp.	Fil.	5.0	1.25	250		35.0	18		4,500	5.0	1,500	182B/482B
483	1 1	4D	Triode	Pwr. Amp.	Fil.	5.0	1.25	250		65.0	20		4,500	3.0	2,000	183/483
484	1	5A	Triode	Det. Amp.	Cath.	2.8	1.60	180		9.0	6.0		9,300	12.5		485
485	ST-12	5A	Triode	Det. Amp.	Cath.	3.0	1.25	180		9.0	5.8		8,900	12.5		27
585	1	4D	Triode	Pwr. Amp.	Fil.	7.5	1.25	450		84.0	55		4,350	3.8	4,600	50

Doad Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

Approximate.
Plate to Plate.
Through 20,000 Ohms.

#Per Tube or Section—No Signal. \$Plate and Target Supply.

S ~ LVANIA ᆔ ≻ σ _ 0 -C œ ш Ś

	Constru	iction				Emitter		Plate	Screen	Neg.	Plate Cur-	Screen Cur-	Plate (1)	Amp. 3	Power	Suggested
Type	Style	Base Diag.	Class	Use	Type	Volts	Amp	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacemen Type
586		4D	Triode	Pwr. Amp.	Fil.	7.5	1.25	450		84.0	55		4.350	3.8	4,600	50
P861		5D	Duo Diode	F.W. Rect.	Cath.	6.3	0.50	225	V. RMS	Per P	late, 50	Ma. DO	Output.		1	84
864	T-9	4D	Triode	Amp.	Fil.	1.1	0.25	90 135		4.5 9.0	2.9 3.5		13,500 12,700	8.2 8.2		
879	ST-12	4AB	Diode	H.W. Rect.	Cath.	2.5	1.75	Now	known	as 2X	2A.		-		1	2X2A
950	1	5K	Pentode	Pwr. Amp.	Fil.	2.0	0.125	135	135	16.5	5.5	2.0	13,500	950	575	33
951		4K	Tetrode	Amp.	Fil.	2.0	0.60	180	67.5	3.0	1.7	0.4	1.2 Meg.	650		1B4P
1201	Lock In	8BN	Triode	Osc. Amp.	Cath.	6.3	0.15	See	Type 71	E5.					•	
1203A	Lock In	4AH	H.F. Diode	Det.	Cath.	6.3	0.15	See '	Type 70	24.						
1204	Lock In	8B0	Pentode	Amp.	Cath.	6.3	0.15	See	Type 7	AB7.						
1206	Lock In	8BV	Duo Tetrode	R.F. Amp.	Cath.	6.3	0.30	See '	Type 70	38.					8	
1221	ST-12	6F	Pentode	Amp.	Cath.	6.3	0.30	Non	Microp	honic,	See 6C6).				
1223	ST-12	7R	Pentode	Amp.	Cath.	6.3	0.30	Non	Microp	honic,	See 6C6	5.				
1229	ST-12	4K	Tetrode		Fil.	2.0	0.06	Spec	ial Typ	e 32. M	lade for	Low Gr	id Current A	Application	8.	
1231	Lock In	8V	Pentode	Amp.	Cath.	6.3	0.45	300	150	200 Ohms		2.5	700,000	5,500	(Cath. Resistor)	
1232	Lock In	8V	Pentode	Amp.	Cath.	6.3	0.45	See '	Type 70	37.						
1265	ST-12	4AJ	Diode	Voltage Reg.	Cold K			Start	ing Vol	tage=1	35, Ope	erating V	oltage=90,	Operating (Current=5	o 30 Ma.
1266	T-9	4AJ	Diode	Voltage Reg.	Cold K			Simi	lar to T	ype Oł	33/VR-9	90-30, E	xcept Regula	ting at 70	Volts.	
1267	T-9	4V	Gas Triode	Relay Tube	Cold K			Simi	lar to T	ype OA	4G.			1		OA4G
1275	ST-16	4C	Duodiode	Rect.	Fil.	5.0	1.75	Simi	lar to T	ype 5Z	3.					
1276	ST-16	4 D	Triode	Amp.	Fil.	4.5	1.14		lar to T		4 G.					
1291	Lock In	7BE	Duo Triode	Osc. Amp.	Fil.	$\begin{array}{c} 1.4\\ 2.8\end{array}$.220 .110	See 7	Гуре 31	37.						
1 Load Resis	tance for Po	wer Out	put Tubes.	•	Approxin	nate.						# P	er Tube or S	ection-N	Signal.	

Deat Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 Conversion Conductance.

Approximate.
Plate to Plate
Through 20,000 Ohms.

§Plate and Target Supply.

t

S Y LVA NIA ᄝ ≻ σ О C œ m. S 73

	Constru				I	Emitter	0	Plate	Screen	Neg.	Plate Cur-	Screen Cur-	Plate 1	Amp. @	Power	Suggested
Туре	Style	Base Diag.	Class	Use	Type	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Resistance Ohms	Factor	Output Mw.	Replacement Type
1293	Т-9	4AA	Triode	Oscillator	Fil.	1.4 1.4	0.11 0.11	90 90	· · · · ·	0 20	$5.2 \\ 13.25$	(120)	Mc. Oscillate	$15 \text{ or, } \mathbf{Rg} = 10,$,000 Ohms)	
1294	Lock In	4AH	H.F. Diode	Det.	Cath.	1.4	.150	See '	Type 1F	(4.					_	
1299	Lock In	6BA	Beam Amp.	Pwr. Amp.	Fil.	1.4 2.8	.220 .110	See '	Гуре ЗІ)6.				•		
1612	Metal	7T	Heptode	Mixer Amp.	Cath.	6.3	0.30	Non	Microp	honic,	See 6L7	•				
1626	ST-12	6Q	Triode	Osc. Amp.	Cath.	12.6	0.25	250			25 ma:	K.		5	4,000	
1629	T- 9	7AL	Electron Ray	Indicator	Cath.	12.6	0.15	Sam	e as Typ	pe 6 E 5.				· · ·		
9001	T-5½	7BD	Pentode	Det. Amp.	Cath.	6.3	0.15	90 250	90 100	33	$1.2 \\ 2.0$	0.5 0.7	1,000,000 1 Meg. Min	1,400		
9002	Min.	7BS	Triode	Amp.	Cath.	6.3	0.15	250		7.0	6.3		11,400	25		
9003	Min.	7BD	Pentode	R.F. Amp.	Cath.	6.3	0.15	250	100	3.0	6.7	2.7	700,000	1,800		0
9006	T-5½	6BH	UHF Diode	Rect.	Cath.	6.3	0.15	270	V. RMS	Plate.	5 Ma. 1	OC Out	out.			
AD		4 G	Diode	H.W. Rect.	Cath.	6.3	0.30	350	V. RMS	Plate,	50 Ma.	DC Ou	tput.			1V
AF		4 C	Duo Diode	F.W. Rect.	Fil.	2.5	3.00	500	V. RMS	Per P	late, 125	i Ma. D	C Output.			82
AG		4 C	Duo Diode	F.W. Rect.	Fil.	5.0	3.00	500	V. RMS	Per P	late, 250	Ma. D	C Output.			83
AX		4D	Triode	Det. Amp.	Fil.	5.0	0.25	135		9.0			20,000	8	55	01 A
В		4E	Triode	Det. Amp.	Fil.	3.3	0.063	90		4.5	2.5		15,500	6.6		V99
BA		4J	Duo Diode	F.W. Rect.	Cold K								C Output.	1		
ВН		4J	Duo Diode	F.W. Rect.	Cold K			350	V. RMS	Per Pl	late, 125	Ma. D	C Output.			0Z 4
BR		4 H	Diode	H.W. Rect.	Cold K		• • • •					DC Ou	-			0Z 4
D1/2		4 B	Diode	H.W. Rect.	Fil.	7.5	1.25					DC Ou				81
D1		4C	Duo Diode	F.W. Rect.	Fil.	5.0	2.00		V. RMS			Ma. D	C Output.			80
DE1		5A	Triode	Det. Amp.	Cath.	2.5	1.75	250		21.0	5.2		34,000	9	300	27
Е		4D	Triode	Pwr. Amp.	Fil.	3.3	0.132	135		22.5	6.5		6,500	3.3	110	20
G		4D	Triode	Amp.	Fil.	5.0	0.25	180		3.0	0.2		150,000	30		40

Load Resistance for Power Output Tubes.
 Mutual Conductance for Tetrodes, Pentodes, Etc.
 ♥ Conversion Conductance.

Approximate.
Plate to Plate.
Through 20,000 Ohms.

*Per Tube or Section-No Signal. \$Plate and Target Supply.

24

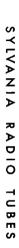
S

YLVANI

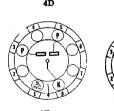
Þ 저 ъ 0

C m ŝ

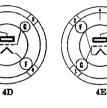
(T)	Constru	uction Base	<i>a</i> 1	Use	F	Emitter			Screen		Plate Cur-	Screen Cur-	Plate ① Resistance	Amp. ③ Factor	Power Output	Suggested
Туре	Style	Diag.	Class	Use	Type	Volts	Amp.	Volts	Volts	Grid Volts	rent Ma.	rent Ma.	Ohms	Factor	Mw.	Replacement Type
Н		4D	Triode	Det. Amp.	Fil.	5.0	0.25	45		0	1.5		31,500	20		01A
H2-10		4AB						1								2X2/879
LA		5B	Pentode	Pwr. Amp.	Fil.	6.3	0.30	180	180	12.0	22	3.9	8,000	2,200	1,400	6A4
PZ		5B	Pentode	Pwr. Amp.	Fil.	2.5	1.75	250	250	16.5	31	6.0	7,000	2,500	2,700	47
PZH		6B	Pentode	Pwr. Amp.	Cath.	2.5	1.75	250	250	16.5	34	6.5	7,000	2,200	3,000	2A5
RE1									• • • • •						•	80
RE2									• • • •							81
S02																50
Wunderlich A Auto		6N	Dual Grid	Det.	Cath.	6.3	0.40	250		16.5	7.0		10,200	9.2	*	
Wunderlich A		5H 6N	Dual Grid	Det.	Cath.	2.5	1.00	250		16.5	7.0	<i>:</i>	10,200	9.2	.,	
Wunderlich B		6P	Special	Det.	Cath.	2.5	1.00	250			17.0					
X6030	Lock In	X6030	Diode	Noise Diode	Fil.	3.0m	0.6	90 250 1400	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	4.0 3.0 0.53	···· ····		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
XXB	Lock In	7BW	Duo Triode	Amp.	Fil.	1.4	0.10	90		0	4.5		11,200	14.5		
XXD	Lock In	8AC	Duo Triode	Amp.	Cath.	12.6	0.15	See	Type 14	AF7/X	XD.		•	•		·
XXFM	Lock In	8BZ	Duodi Tri.	Det. Amp.	Cath.	6.3	0.30	See	Type 72	X7.						
XXL	Lock In	5AC	Triode	Amp.	Cath.	6.3	0.30	$\begin{array}{c} 100 \\ 250 \end{array}$	· · · · · · · · · · · · · · · · · · ·	0 8.0	$\begin{array}{c} 10.0\\ 8.0\end{array}$		7,000 8,700	25 20	····	7A4

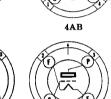

① Load Resistance for Power Output Tubes.
 ② Mutual Conductance for Tetrodes, Pentodes, Etc.
 ▼ Conversion Conductance.

•Approximate. •Plate to Plate. •Through 20,000 Ohms


*Per Tube or Section-No Signal. \$Plate and Target Supply.

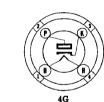
72

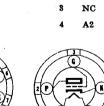

S

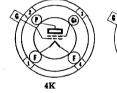


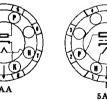
26

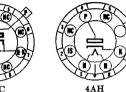
4AA

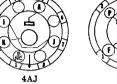


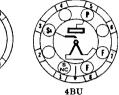

4 V

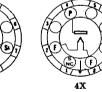

P









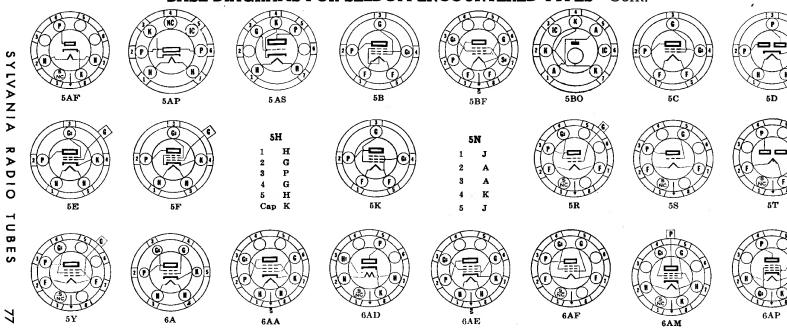


Р

F

4R

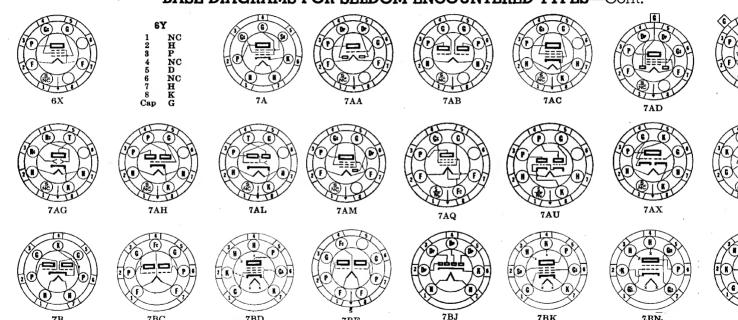
4T


AI

к

5AA

5AC


4 R

BASE DIAGRAMS FOR SELDOM ENCOUNTERED TYPES-Cont.

RADIO TUBES

BASE DIAGRAMS FOR SELDOM ENCOUNTERED TYPES-Cont. S YLVANIA 6BH 6AS 6AW 6BD 6BE 6BJ 6BA RADIO ____ 드네 2 $\widehat{}$ P 50 6D 6E 6K 6F 6H TUBES 6N ĥÞ н н Р ---ര Р G G G G к ĸ н 6M 60 6R 68 н Cap Gs 6L6W

7BE

BASE DIAGRAMS FOR SELDOM ENCOUNTERED TYPES-Cont.

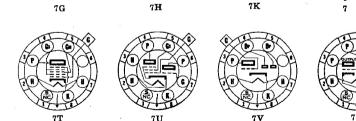
79

7B

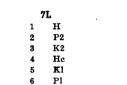
7BC

7BD

7BN


7BK

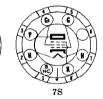
7BQ

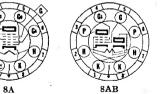

7AF

7AZ

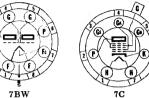
7BS

7BT.

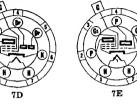

н


- <u>1</u>

7 W

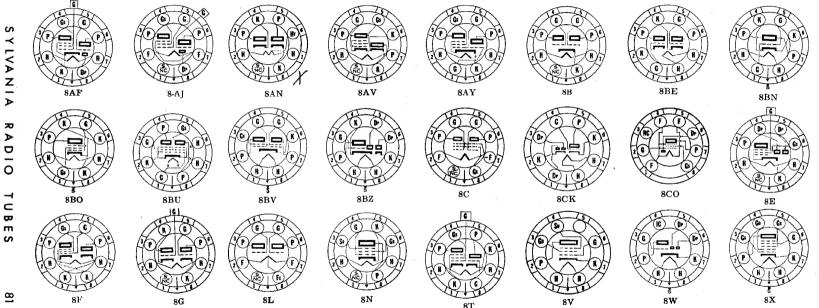


BASE DIAGRAMS FOR SELDOM ENCOUNTERED TYPES—Cont.

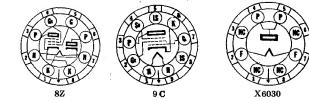



7CH

7M


9

7Z



BASE DIAGRAMS FOR SELDOM ENCOUNTERED TYPES-Cont.

BASE DIAGRAMS FOR SELDOM ENCOUNTERED TYPES

SYLVANIA PANEL LAMPS

A complete line of Sylvania Panel Lamps, especially designed for radio dials, tuning meters, flash-tuning arrangements, and the like, is now available. A market for some types of these lamps will also be found in flashlights, parking lights, auto panel boards, record players, pin-ball machines, and wherever a miniature lamp of this style is required.

The early types of panel lamps were used primarily as onor-off indicators in radio receivers. Present-day panel lamps must be constructed to withstand speaker vibrations, have noise-free operation, current drain within the required limit (particularly when used in ac-dc receivers and battery re-ceivers), and to provide shadowless illumination. Sylvania radio panel lamps have been constructed for all these requirements.

The replacement of panel lamps should be made with lamps having the same type number. This is particularly true in tuning meters, battery, and ac-dc receiver replacements. Sylvania Type S47 is the same as other lamps marked 40A. Lamps marked 49A may be replaced with Sylvania Type S49. Type S292 is mainly for use in 2.5 volt receivers where the line voltage is high and when regular 2.5 volt lamps will not give satisfactory life.

The filament wires of all standard panel lamps are mounted through a small colored glass bead located above the bulb press. If the markings on the lamp to be replaced are not legible, the bead color may be used as identification, since the color identifies the lamp type. The bead color of each lamp is shown in the tabulated data below, and it will be noted that in some cases the bead colors identify more than one particular type of lamp. In these cases other means of identification will be required, such as comparison of bulb, base, and circuit voltage.

Туре	Cir- cuit	De	sign	Bead	Bulb	Minia- ture	Usual	Туре
No.	Volts	Volts	Amp.	Color	Style	Base	Service	No.
S40	68	6.3	0.15	Brown	T-3 ¼	Screw	Radio Dials	S40
S41	2.5	2.5	0.50	White	T-3 ¼	Screw	Radio Dials	S41
S42	3.2	3.2	0.35	Green	T-3 ¼	Screw	Radio Dials	S42
S43	2.5	2.5	0.50	White	T-3 ½	Bayonet	Radio Dials and Tuning Meters	S43
S44	6-8	6.3	0.25	Blue	T-3 ¼	Bayonet	Radio Dials and Tuning Meters	S44
S45	3.2	8.2	0.35	White	T-3 ¼	Bayonet	Radio Dials	S45
S46	6-8	6.3	0.25	Blue	T-3 ¼	Screw	Radio Dials and	S46
		-					Tuning Meters	
*S47	6-8	6.3	0.15	Brown	T-31/4	Bayonet	Radio Dials	*S47
S48	2.0	2.0	0.06	Pink	T-3 1/4	Screw	Battery Set Dials	S48
*S49	2.0	2.0	0.06	Pink	T-3¼	Bayonet	Battery Set Dials	* S49
S 50	6-8	7.5	0.20	White	G-3 ½	Screw	Auto Sets Flash Lights	S50
S51	6-8	7.5	0.20	White	G-31⁄2	Bayonet	Auto Sets, Auto Panels	S51
S55	6-8	6.5	0.40	White	G-4½	Bayonet	Auto Sets, Parking Lights	S55
S292	2.9	2.9	0.17	White	T-31/4	Screw	Radio Dials	S292
S292A	2.9	2.9	0.17	White	T-3 ¼	Bayonet	Radio Dials Coin Machines	S292A
S1455	18.0	18.0	0.25	Brown	G-5	Screw	Coin Machines	S1455
S1455A	18.0	18.0	0.25	Brown	G-5	Bayonet	Coin Machines	S1455A

CHARACTERISTICS

*Sylvania Types S47 and S49 are interchangeable with Types 40A and 49A, respectively, in other brands.

SYLVANIA RADIO TUBES

SYLVANIA BALLAST TUBES AND PLUG-IN RESISTORS

Ballast Tubes and Plug-in Resistors form two divisions based upon differences in construction and regulating characteristics. The first group is employed mainly in battery operated receivers to maintain substantially constant current over a considerable range of battery voltage variation. The second group is used in ac-dc receivers and 32-volt sets where the voltage drop required may cover a wide range. Such a resistor tube affords some amount of regulation, but the characteristic is not as flat as for regulators intended for use in battery receivers. These should be operated as closely as possible to the standard current ratings in order to realize the most efficient performance.

The tubes for use in battery sets are designed to permit the operation of 2-volt types from a 3-volt battery source which may consist of two banks of dry cells in parallel, the banks being connected in series. The supply voltage varies from about 3.4 volts to 2.2 volts during the life of the batteries. For this range of supply voltage the types listed below will maintain the socket terminal voltage between 1.8 and 2.2 volts. During the major part of battery life the socket voltage remains very close to the rated value of 2.0 volts.

Due to the confusion in ballast and resistor tube type numbers there has been considerable misunderstanding as to the correct type of tube to be used for replacement purposes in receivers. All the Sylvania ballast tubes listed will replace any ballast tubes having the same type numbers. Furthermore, Sylvania ballast tubes will also replace any ballast tubes for similar service, regardless of designating type numbers, providing the filament current load is identical and the basing arrangement is the same. The same is true for the Sylvania resistor types employed in ac-dc service provided that, in addition, the average voltage drop is also the same.

tion, the average voltage drop is also the same. To determine the filament current load in series with the ballast tube it is necessary to include the total filament current drain of the receiver tubes plus the current drain of the dial light if the latter is employed. For example, a set using a Type 19, a Type 30, and 3 Type 34 tubes has a normal filament current drain of 500 milliamperes. The correct ballast tube would be a Type 1A1.

Туре	Use	Ma. Load Curren	Average Voltage nt Drop*	Bulb	Base	(P)
1A1/5E1	Battery	500	1.0	ST-12	4-A	((m
1B1	Battery	360	1.0	ST-12	4-A	
1C1	Battery	745	1.0	ST-12	4-A	
1D1	Battery	240	1.0	ST-12	4-A	y .
1E1	Battery	480	1.0	ST-12	4-A	<u> </u>
1F1	Battery	720	1.0	ST-12	4-A	4A
1G1	Battery	420	1.0	ST-12	4-A	~
1J1	Battery	620	1.0	ST-12	4-A	A Contraction
1K1	Battery	550	1.0	ST-12	4-A	101
1R1G	Battery	540	1.0	ST-12	4-T	MV .
1T1G	Battery	560	1.0	ST-12	4-T	MY
ixi	Battery	780	1.0	ST-12	4-A	112 000
1 Y 1	Battery	540	1.0	ST-12	4-A	TXIX I
121	Battery	900	1.0	ST-12	4-A	(NC) I (
2 .	DC or AC-DC	300	9.0	S-14	4-A	
2 3 4	DC or AC-DC	300	128.0	ST-16	4-A	
4	DC or AC-DC	400	115.0	ST-16	4-A	4 T
4A1	Battery	300	4.0	ST-12	4-A	
	DC or AC-DC	460	115.0	ST-16	4-A	131
5 6	Battery	685	1.0	ST-12	4-A	10
7	DC or AC-DC	300	176.0	ST-16	4-A	11 2
8	DC or AC-DC	300	132.0	ST-16	4-A	11 (
ğ	DC or AC-DC	300	50.0	ST-16	4-A	the way
46A1	DC or AC-DC	400	46.1	ST-12	2-8	EU m
46B1	DC or AC-DC	300	46.1	ST-12	2-8	$((\land))$

CHARACTERISTICS

BASE VIEWS

28

*The voltage drop shown is for average operation and may vary according to the supply voltage.

SYLVANIA ELECTRIC PRODUCTS INC.

PRODUCT DIRECTORY

RADIO TUBE DIVISION Emporium, Pennsylvania Receiving Tubes • Test Equipment

TELEVISION PICTURE TUBE DIVISION Seneca Falls, New York Cathode Ray Tubes • Television Picture Tubes

RADIO & TELEVISION DIVISION 254 Rano Street, Buffalo 7, New York Radio Receivers • Television Receivers

ELECTRONICS DIVISION

70 Forsyth Street. Boston 15, Massachusetts Specialized Electronics Equipment • Germanium and Silicon Diodes — Magnetrons — Thyratrons — TR Tubes

PHOTOFLASH DIVISION

Broad Street, Montoursville, Pennsylvania Photoflash Lamps • Photoflood Lamps

LIGHTING DIVISION

60 Boston Street, Salem, Massachusetts Fluorescent & Incandescent Lamps • Sign Tubing Lamp Fixtures & Accessories

TUNGSTEN & CHEMICAL DIVISION Towanda, Pennsylvania

Tungsten Products • Fluorescent Chemicals

PARTS DIVISION

208 East Street, Warren, Pennsylvania -Wire Parts, Welds • Plastics

For information on specific products, address inquiries to the appropriate division.

SYLVANIA PLANTS, LABORATORIES, AND OFFICES LOCATED IN-

Alexandria, Va. Altoona, Pa. Atlanta, Ga. Bayside, L. I., N. Y. Boston, Mass. Brookville, Pa. Buffalo, N.Y. Chicago, Ill. Cincinnati, Ohio Cleveland, Ohio Danvers, Mass. Dayton, Ohio Detroit, Mich. Drummondsville, P. Q., Canada Emporium, Pa. Flushing, N. Y. Huntington, W. Va. Ipswich, Mass. Kansas City, Mo.

Kew Gardens, L. I., N. Y. Los Angeles, Calif. Mill Hall, Pa. Mineola, L. I., N. Y. Montoursville, Pa. Montreal, P. Q., Canada New York, New York Ottawa, Ohio Philadelphia, Pa. Salem, Mass. San Francisco, Calif., Seattle, Wash. Seneca Falls, N. Y. Shawnee, Okla. St. Marys, Pa. Towanda, Pa. Warren, Pa. Washington, D. C. Williamsport, Pa.

SYLVANIA RADIO TUBES

Let Sylvania Help You .

Besides this Technical Manual, Sylvania Electric has a large assortment of Sales and Service helps for Radio and Television Service Men. Most of these are free for the asking.

Semi-technical literature, such as Characteristics Sheets, Service Hints Booklets, TV Tube Complement Book and Radio and Television Instruction Courses are in constant demand by successful servicemen, electronics schools and manufacturers.

Sylvania News, a monthly publication, features a separate Technical Section, items of trade interest and service helps.

Window and Door Decals, Window Displays, price literature, direct mail helps, newspaper mats . . . in fact, complete local advertising campaigns prepared by a nationally famous advertising agency and coordinated with Sylvania's national campaigns are available.

Practically all of the above helps are available at nominal or no cost.

Business Record Books, Job Record Cards, Service Forms, Personalized Stationery, Billheads and Business Cards, Tools, Service Kits, and many other aids can be purchased at manufacturer's cost through the cooperation of Sylvania Electric Products, Inc.

Ask your Sylvania Distributor for complete information, or write:

Advertising Department,

Sylvania Electric Products, Inc.,

Emporium, Pa.

SYLVANIA REFERENCE BOOKS

\$1.00

SERVICING RADIO AND TELEVISION WITH A VACUUM TUBE VOLTMETER

A valuable aid to every technician, whether he services radio, television, or sound equipment. It's a 48-page book packed with information, schematics, and block diagrams that will help you get maximum utility from your vacuum tube voltmeter and aid you in reducing servicing time per job.

SIETANI TIBE SERVITETION RATIE SUMANA ELECTRIC

TUBE SUBSTITUTION MANUAL

This 40-page book gives substitution data for over 300 popular radio and television tubes, tabulated in convenient, easy-to-read listings in the six major categories. Included are extensive sections on television receiving types and television picture tube types. There is also a complete classification chart which lists tube types by categories according to their principal function. Other data includes tube adapter wiring diagrams and an important article on substitutions in a series filament type receiver.

No Charge

40 USES FOR GERMANIUM DIODES

Here's the most complete collection of uses for germanium diodes ever published. Includes radio and television receiver circuits, transmitter circuits, many test and control circuits and dozens of plans for handy electronic gadgets.

 25ϕ

Order From Your Sylvania Distributor

SYLVANIA REFERENCE BOOKS

SERVICING TV RECEIVERS

LBY5G

The biggest "little" book ever printed for the television serviceman, Contains page after page of handy reference for the causes and corrections for faulty reception in TV receiving sets. Profusely illustrated, complete with circuit diagrams, that save guessing and suggestions that save time and make more money, quicker, for you! Handy pocket size, 5" x 7".

\$2.00

HOW TO SERVICE RADIOS WITH AN OSCILLOSCOPE

Complete 72-page book that gives you step-by-step instructions for using the oscilloscope in testing and servicing radio receivers, audio amplifiers and transmitters. Thoroughly illustrated, and written in a language that you (and we) can understand. Makes your work more interesting and accurate.

SERVICING

ECENVERS

\$1.00

TELEVISION RECEIVER TUBE COMPLEMENT BOOK

The most complete, authentic book of its type ever published. Gives complete tube complement of all current television receiver models. Includes list of manufacturer's names and addresses, replacement charts and usage table. It's an absolute "must" on your shelf for successful servicing of any television receiver, one of the many Sylvania services designed to help you give more dependable service.

Order From Your Sylvania Distributor

A CONTRACTOR OF A CONTRACTOR OF

50¢

1.2. mar 14

e to tom