E2V Technologies

CX1135

Hydrogen-Filled Ceramic Thyratron

The data to be read in conjunction with the Hydrogen Thyratron Preamble.

ABRIDGED DATA

Hydrogen-filled tetrode thyratron with ceramic/metal envelope, featuring low jitter, firing time and drift. Suitable for switching high power at very high pulse repetition rates or for switching long pulses. A hydrogen reservoir operating from a separate supply is incorporated.

Peak forward anode voltage	ge .			25	kV max
Peak anode current				1500	A max
Average anode current .				. 1.25	A max

GENERAL

Electrical

Cathode (connected internally

to one end of heater)								oxid	e coa	ted
Cathode heater voltage								6.3 <u>+</u>	5%	V
Cathode heater current								22		Α
Reservoir heater voltage	(se	e n	ote	1)				6.3 <u>+</u>	5%	V
Reservoir heater current								2.5		Α
Tube heating time (minir	nun	n)						10.0	1	min
Anode to grid 2 capacita	nce					15	to	20		рF

Mechanical

Seated height		157 mm (6.181 inches) max
Clearance required below		
mounting flange		38.1 mm (1.500 inches) min
Overall diameter		
(mounting flange)	. 8	88.9 mm (3.500 inches) nom
(mounting flange)		
0 0		1.5 kg (3.3 pounds) approx

Cooling					forced-air or liquid
Liquid .					oil or coolant immersion
Forced-air					see below

The tube may be cooled by forced-air directed mainly onto the base, and the ceramic envelope should be maintained below the maximum rated temperature. An air flow of at least 1.41 m³/ min (50 ft³/min), depending on the mechanical layout, will be necessary to keep the tube operating temperatures under the limits specified below.

In addition to 160 W of heater power, the tube dissipates from 50 W per ampere average anode current, rising to 150 W/A at the highest rates of rise and fall of anode current.

The cathode end of the tube must be cooled whenever heater voltages are applied, since the cathode flange will reach a temperature of 120 °C above ambient in the absence of cooling. Envelone temperature:

Liivolopo t	omporataro.	
ceramic	anode and grid	150 °

ceramic, anode and grid °C max °C max cathode flange and base

E2V Technologies Limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU England Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492

E2V Technologies Inc. 4 Westchester Plaza, PO Box 1482, Elmsford, NY10523-1482 USA Telephone: (914) 592-6050 Facsimile: (914) 592-5148 e-mail: enquiries@e2vtechnologies.us

MAXIMUM AND MINIMUM RATINGS (Absolute values)

These ratings cannot necessarily be used simultaneously, and no individual rating must be exceeded.

.			M	in	Турі	cal Max	(
Anode (Pulse Modula	ato	r S	Ser	vic	e)		
Peak forward anode voltage Peak inverse anode voltage			-		-	25	kV
(see note 3)			-		-	25	kV
					1500	- 1.2	A
Average anode current . Rate of rise of anode current	t				-		
(see notes 4 and 5)				į	5000	- -	A/μs
Pulse repetition rate		•	_		_	25	kHz
					Min	Max	
Grid 2							
Unloaded grid 2 drive pulse	volt	age)				
(see note 6)					200	1000	V
Grid 2 pulse duration					1.0	-	μs
Rate of rise of grid 2 pulse					10		1.777
(see note 5)					10 0.5	-	kV/μs
Grid 2 pulse delay Peak inverse grid 2 voltage		•				3.0 450	μs V
Loaded grid 2 bias voltage						- 200	V
Forward impedance of		•	•		00	200	v
grid 2 drive circuit					50	1000	Ω
Crid 1 Duland							
Grid 1 - Pulsed							
Unloaded grid 1 drive pulse				,	200	1000	V
(see note 6) Grid 1 pulse duration					300 2.0	1000	-
Rate of rise of grid 1 pulse		•	•	•	2.0		μs
(see note 5)					1.0	_	kV/μs
Peak inverse grid 1 voltage						450	V
Loaded grid 1 bias voltage						. see	note 7
Peak grid 1 drive current					1.0	10.0	Α
Grid 1 - DC Primed (S	200	n	nt:	ا2 د	١		
DC grid 1 unloaded priming				, 0,	, 75	150	V
		_			50	150	mA
De grid i priming editent		•	•		50	100	ША
Cathode							
11					6.3	± 5%	V
Heating time					10.0	-	min
J							
Reservoir							
Heater voltage (see note 1)					6.3	± 5%	V
Heating time					10.0	-	min
Environmental							
					.50	+90	°C
Ambient temperature Altitude						+90	km
Altitude		•	•	•		10 000	ft
						. 5 000	

CHARACTERISTICS

	Min	Typical	Max	
Critical DC anode voltage for				
conduction (see note 9)		0.3	1.0	kV
Anode delay time				
(see notes 9 and 10)		0.1	0.3	μs
Anode delay time drift				
(see notes 9 and 11)		20	50	ns
Time jitter (see note 9)		1.0	5.0	ns
Cathode heater current				
(at 6.3 V)	18	22	25	Α
Reservoir heater current				
(at 6.3 V)		2.5	-	Α

NOTES

- 1. The reservoir heater must be decoupled with a suitable capacitor to avoid damage by spike voltages.
- 2. The tube must be mounted by means of its mounting flange.
- 3. The peak inverse voltage including spike must not exceed 10 kV for the first 25 μs after the anode pulse. Amplitude and rate of rise of inverse voltage contribute greatly to tube dissipation and electrode damage; if these are not minimised in the circuit, tube life will be shortened considerably. The aim should be for an inverse voltage of 3 5 kV peak with a rise time of $0.5~\mu s$.
- 4. For single shot or burst mode applications this parameter can exceed 100 kA/ μ s. The ultimate value which can be attained depends to a large extent upon the external circuit.
- 5. This rate of rise refers to that part of the leading edge of the pulse between 25% and 75% of the pulse amplitude.
- 6. Measured with respect to cathode. Pre-pulsing grid 1 is recommended. The last 0.25 μs of the top of the grid 1 pulse must overlap the corresponding first 0.25 μs of the top of the delayed grid 2 pulse.
- 7. DC negative bias voltages must not be applied to grid 1. When grid 1 is pulse driven, the potential of grid 1 may vary between -10 V and +5 V with respect to cathode potential during the period between the completion of recovery and the commencement of the succeeding grid pulse.
- 8. When DC priming is used on grid 1, a negative bias of 100 to 200 V must be applied to grid 2 to ensure anode voltage hold-off. Also the higher grid 1 is pulsed, the larger the grid 2 negative bias must be to prevent the tube firing on the grid 1 pulse.
- Typical figures are obtained on test using conditions of minimum grid drive. Improved performance can be expected by increasing the grid drive.
- 10. The time interval between the instant when the unloaded grid 2 voltage passes cathode potential and the instant when anode conduction takes place.
- 11. The drift in delay time over a period from 10 seconds to 10 minutes after reaching full voltage.

CX1135, page 2 © E2V Technologies

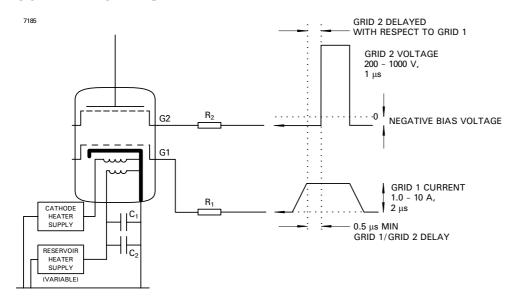
HEALTH AND SAFETY HAZARDS

E2V Technologies hydrogen thyratrons are safe to handle and operate, provided that the relevant precautions stated herein are observed. E2V Technologies does not accept responsibility for damage or injury resulting from the use of electronic devices it produces. Equipment manufacturers and users must ensure that adequate precautions are taken. Appropriate warning labels and notices must be provided on equipments incorporating E2V Technologies devices and in operating manuals.

High Voltage

Equipment must be designed so that personnel cannot come into contact with high voltage circuits. All high voltage circuits

and terminals must be enclosed and fail-safe interlock switches must be fitted to disconnect the primary power supply and discharge all high voltage capacitors and other stored charges before allowing access. Interlock switches must not be bypassed to allow operation with access doors open.



X-Ray Radiation

All high voltage devices produce X-rays during operation and may require shielding. The X-ray radiation from hydrogen thyratrons is usually reduced to a safe level by enclosing the equipment or shielding the thyratron with at least 1.6 mm (1 / $_{16}$ inch) thick steel panels.

Users and equipment manufacturers must check the radiation level under their maximum operating conditions.

SCHEMATIC DIAGRAM

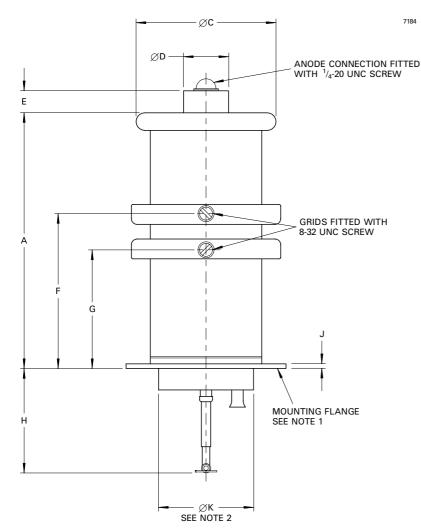
RECOMMENDED GRID, CATHODE AND RESERVOIR HEATER CONNECTIONS

R₁ = Grid 1 series resistor. 12 W vitreous enamelled wirewound is recommended, of a total impedance to match the grid 1 drive pulse circuit.

R₂ = Grid 2 series resistor. 12 W vitreous enamelled wirewound is recommended, of an impedance to match the grid 2 drive pulse circuit.

 C_1 , C_2 - reservoir protection capacitors with a voltage rating $\geqslant 500 \text{ V}$;

 $C_1 = 1000 \text{ pF low inductance (e.g. ceramic)},$

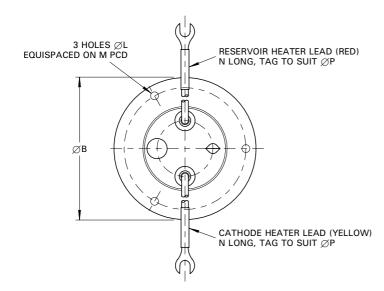

 $C_2 = 1 \mu F$ (e.g. polycarbonate or polypropylene).

Components R₁, R₂, C₁ and C₂ should be mounted as close to the tube as possible.

© E2V Technologies CX1135, page 3

OUTLINE

(All dimensions without limits are nominal)



Ref	Millimetres	Inches
А	146.0 max	5.748 max
В	88.9	3.500
С	77.77	3.062
D	25.0	0.984
E	10.6	0.417
F	86.1	3.390
G	65.9	2.594
Н	38.1 min	1.500 min
J	2.54	0.100
K	53.98 max	2.125 max
L	5.0	0.197
M	76.2	3.000
Ν	152.4	6.000
Р	6.35	0.250

Inch dimensions have been derived from millimetres.

Outline Notes

- The mounting flange is the connection for the cathode, cathode heater return and reservoir heater return.
- 2. The recommended mounting hole is 55.55 mm (2.187 inches) diameter.

Whilst E2V Technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. E2V Technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.