e2v technologies

CX1159 (Service Type CV9080) Deuterium Thyratron

The data to be read in conjunction with the Hydrogen Thyratron Preamble.

ABRIDGED DATA

Deuterium-filled tetrode thyratron, featuring low jitter and low anode delay time drift. Suitable for use at high pulse repetition rates, in parallel for switching higher powers, or for switching long pulses. A reservoir operating from the cathode heater supply is incorporated.

Peak forward anode voltage			33	kV max
Peak anode current (see page 2)			1000	A max
Average anode current				
Anode heating factor		14	x 10 ⁹ V/	Apps max
Peak output power			16.5	MW max

GENERAL

Electrical

Cathode (connected internally

mid-point of heater)	bated
ter voltage \ldots \ldots \ldots \ldots \ldots \ldots \ldots $6.3 \pm 5\%$	ώV
ter current	А
e heating time (minimum) 5.0	min
r-electrode capacitances (approximate):	
node to grid 2 (grid 1 and	
cathode not connected) 13	рF
node to grid 1 (grid 2 and	
cathode not connected) 7.5	рF
node to cathode (grid 1 and	
grid 2 not connected)	рF

Mechanical

Overall length	
Overall diameter	84.12 mm (3.312 inches) max
Net weight	. 0.7 kg (1.5 pounds) approx
Mounting position (see note 1)	any
Base	pin spacing as B5F;
	metal shell with micalex insert
Base adaptors	
Top cap (see note 2)	BS448-CT3
CX1159 is also available with a type CX1551.	flange base and flying leads as

Cooling																natural
---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---------

e2v technologies limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU England Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 e-mail: enquiries@e2vtechnologies.com Internet: www.e2vtechnologies.com Holding Company: e2v holdings limited

e2v technologies inc. 4 Westchester Plaza, PO Box 1482, Elmsford, NY10523-1482 USA Telephone: (914) 592-6050 Facsimile: (914) 592-5148 e-mail: enquiries@e2vtechnologies.us

A1A-CX1159 Issue 4, August 2003 282G/2069

PULSE MODULATOR SERVICE MAXIMUM AND MINIMUM RATINGS (Absolute values)

Anode	
Peak forward anode voltage	
(see note 3) 33 k	V
Peak inverse anode voltage	
(see note 4) 25 k	V
Peak anode current 1000	А
Peak anode current (pulse repetition	
rate limited to 60 pps max) 2000	А
Average anode current (see note 5) 1.25	А
Rate of rise of anode current	
(see note 6)	ιs
Anode heating factor 14 x 10 ⁹ VApp)S

Min

Max

Grid 2

Unloaded grid 2 drive pulse voltage

(see note 7)		200	1000	V
Grid 2 pulse duration		. 1.0	-	μs
Rate of rise of grid 2 pulse (see note	96)	. 1.0	-	kV/μs
Grid 2 pulse delay		. 0.5	3.0	μs
Peak inverse grid 2 voltage		. –	450	V
Loaded grid 2 bias voltage		-50	- 150	V
Forward impedance of				
grid 2 drive circuit		50	800	Ω

Grid 1 - DC Primed (See note 8)

DC grid 1 unloaded priming voltage	75	150	V
DC grid 1 priming current	50	100	mΑ

Grid 1 - Pulsed

Unloaded grid 1 drive pulse voltage

(see note 7)			3	00	1000	V
Grid 1 pulse duration				2.0	-	μs
Rate of rise of grid 1						
pulse (see note 6)				1.0	-	kV/µs
Peak inverse grid 1 voltage				-	450	V
Loaded grid 1 bias voltage					. see	e note 9
Peak grid 1 drive current				0.3	1.0	А

Cathode

Heater voltage .					6.3 <u>+</u> 5%	V
Tube heating time		·			5.0 -	· min

Environmental

Ambient	ter	npe	erat	ure				-50	+90	°C
Altitude									3	km
								-	10 000	ft

CHARACTERISTICS

	Min	Typical	Max	
Critical DC anode voltage for				
conduction (see note 10)		0.5	2.0	kV
Anode delay time				
(see notes 10 and 11)		0.15	0.25	μs
Anode delay time drift				
(see notes 10, 12 and 13) .		20	50	ns
Time jitter (see notes 10 and 13)	. –	1.0	5.0	ns
Recovery time		see note 1	4 and cu	irves
Heater current (at 6.3 V)	18	22	25	А

RATINGS FOR SINGLE-SHOT OR CROWBAR SERVICE (See note 8)

NOTES

- 1. Clamping is only permissible by the base.
- 2. A large area anode connector, e2v technologies type MA360, is recommended.
- 3. The maximum permissible peak forward voltage for instantaneous starting is 20 kV and there must be no overshoot.
- 4. The peak inverse voltage must not exceed 25 kV for the first 25 μs after the anode pulse.
- 5. For inverter type applications where the peak current does not exceed 50 A, the maximum average anode current may be increased to 2.5 A; e2v technologies should be consulted.
- 6. This rate of rise refers to that part of the leading edge of the pulse between 25% and 75% of the pulse amplitude.
- 7. Measured with respect to cathode. In certain cases the maximum drive pulse voltage may be exceeded without damage to the tube; a maximum value of 2.5 kV is then recommended. When grid 1 is pulse driven, the last 0.25 μs of the top of the grid 1 pulse must overlap the corresponding first 0.25 μs of the top of the delayed grid 2 pulse.
- When DC priming is used on grid 1, a negative bias of 100 to 200 V must be applied to grid 2 to ensure anode voltage hold-off. DC priming is recommended for crowbar service.
- 9. DC negative bias voltages must not be applied to grid 1. When grid 1 is pulse driven, the potential of grid 1 may vary between -10 and +5 V with respect to cathode potential during the period between the completion of recovery and the commencement of the succeeding grid pulse.
- Typical figures are obtained on test using conditions of minimum grid drive. Improved performance can be expected by increasing the grid drive.
- 11. The time interval between the instant at which the rising unloaded grid 2 pulse reaches 25% of its pulse amplitude and the instant when anode conduction takes place.
- 12. The drift in delay time over a period from 10 seconds to 10 minutes after reaching full voltage.
- 13. For equipment where jitter and anode delay time drift are not important, the tube may be triggered by applying a single pulse to grid 2 and connecting grid 1 to grid 2 via a 1000 pF capacitor shunted by a 0.1 M Ω resistor. These components are incorporated in adaptor assemblies MA92 and MA179 (see below).
- 14. The recovery characteristics are controlled on a sampling basis.

ADAPTOR ASSEMBLIES

In addition to standard top cap connectors and base sockets, a number of adaptor assemblies are available from e2v technologies.

MA91

A five-contact socket fitted with flexible leads and terminal tags, and mounted on an insulating base plate. It provides a conversion from base to flange type mounting.

The CX1159 is also available with a flange base with flying leads as type CX1551.

MA92

Similar to MA91 but incorporates an RC network and is designed for use with CX1159 where a single pulse drive and flying lead connections are required.

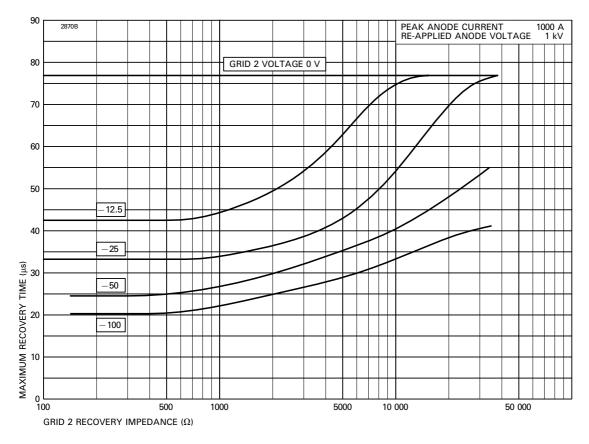
MA179

A five-contact socket with flexible leads and terminal tags, mounted on an insulating base plate; it is fitted with a base clamp. It incorporates an RC network and is designed for use with CX1159 where a single pulse drive and flying lead connections are required.

Further information is contained in the leaflet 'Accessories for Hydrogen Thyratrons'.

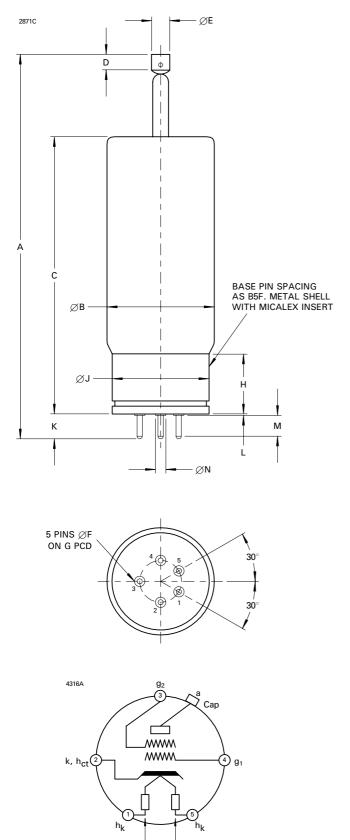
HEALTH AND SAFETY HAZARDS

e2v technologies hydrogen thyratrons are safe to handle and operate, provided that the relevant precautions stated herein are observed. e2v technologies does not accept responsibility for damage or injury resulting from the use of electronic devices it produces. Equipment manufacturers and users must ensure that adequate precautions are taken. Appropriate warning labels and notices must be provided on equipments incorporating e2v technologies devices and in operating manuals.


🖄 High Voltage

Equipment must be designed so that personnel cannot come into contact with high voltage circuits. All high voltage circuits and terminals must be enclosed and fail-safe interlock switches must be fitted to disconnect the primary power supply and discharge all high voltage capacitors and other stored charges before allowing access. Interlock switches must not be bypassed to allow operation with access doors open.

X-Ray Radiation


All high voltage devices produce X-rays during operation and may require shielding. The X-ray radiation from hydrogen thyratrons is usually reduced to a safe level by enclosing the equipment or shielding the thyratron with at least 1.6 mm ($^{1}/_{16}$ inch) thick steel panels.

Users and equipment manufacturers must check the radiation level under their maximum operating conditions.

MAXIMUM RECOVERY CHARACTERISTICS

OUTLINE (All dimensions without limits are nominal)

Reservoirs (internal)

Ref	Inches	Millimetres	
A	12.000 ± 0.500	304.8 ± 12.7	
В	3.312 max	84.12 max	
С	8.500 ± 0.500	215.9 ± 12.7	
D	0.500 min	12.7 min	
E	0.566 ± 0.007	14.38 ± 0.18	
F	0.187 ± 0.003	4.750 ± 0.076	
G	1.250	31.75	
Н	1.937	49.2	
J	3.062 ± 0.062	77.77 <u>+</u> 1.57	
К	0.770 max	19.56 max	
L	0.073 max	1.85 max	
Μ	0.575 min	14.6 min	
Ν	0.260 max	6.6 max	

Millimetre dimensions have been derived from inches.

Pin	Element
1	Heater
2	Cathode, connected internally
	to heater mid-point
3	Grid 2
4	Grid 1
5	Heater
Тор сар	Anode

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.